

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	TChannel for Python documentation

TChannel for Python

[image: build status] [https://travis-ci.org/uber/tchannel-python] [image: coverage] [https://coveralls.io/github/uber/tchannel-python?branch=master]

A Python implementation of TChannel [http://tchannel.readthedocs.org/].

	Getting Started
	Initial Setup

	Thrift Interface Definition

	Thrift Types

	Python Server

	Handlers

	Hyperbahn

	Debugging

	Python Client

	API Documentation
	TChannel

	Serialization Schemes

	Exception Handling

	Synchronous Client

	Testing

	FAQ
	Can I register an endpoint that accepts all requests?

	Why do I keep getting a “Cannot serialize MyType into a ‘MyType’” error?

	Changelog
	Changes by Version

	Upgrade Guide

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TChannel for Python documentation

Getting Started

This guide is current as of version 0.18.0. See the Upgrade Guide if
you’re running an older version.

The code matching this guide is here [https://github.com/uber/tchannel-python/tree/master/examples/guide].

Initial Setup

Create a directory called keyvalue to work inside of:

$ mkdir ~/keyvalue
$ cd ~/keyvalue

Inside of this directory we’re also going to create a keyvalue module, which
requires an __init__.py and a setup.py at the root:

$ mkdir keyvalue
$ touch keyvalue/__init__.py

Setup a virtual environment [https://virtualenv.pypa.io/en/latest/] for your
service and install the Tornado and Tchannel packages:

$ virtualenv env
$ source env/bin/activate
$ pip install 'tchannel<0.19'

Thrift Interface Definition

Create a Thrift [https://thrift.apache.org/] file under
thrift/keyvalue.thrift that defines an interface for your service:

$ mkdir thrift
$ vim thrift/keyvalue.thrift
$ cat thrift/keyvalue.thrift

exception NotFoundError {
 1: required string key,
}

service KeyValue {
 string getValue(
 1: string key,
) throws (
 1: NotFoundError notFound,
)

 void setValue(
 1: string key,
 2: string value,
)
}

This defines a service named KeyValue with two functions:

	getValue

	a function which takes one string parameter, and returns a string.

	setValue

	a void function that takes in two parameters.

Thrift Types

TChannel has some custom behavior so it can’t use the code generated by the
Apache Thrift code generator. Instead we’re going to dynamically generate our
Thrift types.

Open up keyvalue/thrift.py:

$ cat > keyvalue/thrift.py
from tchannel import thrift

service = thrift.load(path='thrift/keyvalue.thrift', service='keyvalue')

Let’s make sure everything is working:

$ python -m keyvalue.thrift

You shouldn’t see any errors. A lot of magic just happened :)

Python Server

To serve an application we need to instantiate a TChannel instance, which we
will register handlers against. Open up keyvalue/server.py and write
something like this:

from __future__ import absolute_import

from tornado import ioloop
from tornado import gen

from tchannel import TChannel

from keyvalue.thrift import service

tchannel = TChannel('keyvalue-server')

@tchannel.thrift.register(service.KeyValue)
def getValue(request):
 pass

@tchannel.thrift.register(service.KeyValue)
def setValue(request):
 pass

def run():
 tchannel.listen()
 print('Listening on %s' % tchannel.hostport)

if __name__ == '__main__':
 run()
 ioloop.IOLoop.current().start()

Here we have created a TChannel instance and registered two no-op handlers with
it. The name of these handlers map directly to the Thrift service we defined
earlier.

A TChannel server only has one requirement: a name for itself. By default an
ephemeral port will be chosen to listen on (although an explicit port can be
provided).

(As your application becomes more complex, you won’t want to put everything in
a single file like this. Good code structure is beyond the scope of this
guide.)

Let’s make sure this server is in a working state:

python -m keyvalue.server
Listening on localhost:8889
^C

The process should hang until you kill it, since it’s listening for requests to
handle. You shouldn’t get any exceptions.

Handlers

To implement our service’s endpoints let’s create an in-memory dictionary that
our endpoints will manipulate:

values = {}

@tchannel.thrift.register(service.KeyValue)
def getValue(request):
 key = request.body.key
 value = values.get(key)

 if value is None:
 raise service.NotFoundError(key)

 return value

@tchannel.thrift.register(service.KeyValue)
def setValue(request):
 key = request.body.key
 value = request.body.value
 values[key] = value

You can see that the return value of getValue will be coerced into the
expected Thrift shape. If we needed to return an additional field, we could
accomplish this by returning a dictionary.

This example service doesn’t do any network IO work. If we wanted to take
advantage of Tornado’s asynchronous [http://tornado.readthedocs.org/en/latest/gen.html] capabilities, we could
define our handlers as coroutines and yield to IO operations:

@tchannel.register(service.KeyValue)
@gen.coroutine
def setValue(request):
 key = request.body.key
 value = request.body.value

 # Simulate some non-blocking IO work.
 yield gen.sleep(1.0)

 values[key] = value

Transport Headers

In addition to the call arguments and headers, the request object also
provides some additional information about the current request under the
request.transport object:

	transport.flags

	Request flags used by the protocol for fragmentation and streaming.

	transport.ttl

	The time (in milliseconds) within which the caller expects a response.

	transport.headers

	Protocol level headers for the request. For more information on transport
headers check the
Transport Headers [https://github.com/uber/tchannel/blob/master/docs/protocol.md#transport-headers]
section of the protocol document.

Hyperbahn

As mentioned earlier, our service is listening on an ephemeral port, so we are
going to register it with the Hyperbahn routing mesh. Clients will use this
Hyperbahn mesh to determine how to communicate with your service.

Let’s change our run method to advertise our service with a local Hyperbahn
instance:

import json
import os

@gen.coroutine
def run():

 tchannel.listen()
 print('Listening on %s' % tchannel.hostport)

 if os.path.exists('/path/to/hyperbahn_hostlist.json'):
 with open('/path/to/hyperbahn_hostlist.json', 'r') as f:
 hyperbahn_hostlist = json.load(f)
 yield tchannel.advertise(routers=hyperbahn_hostlist)

The advertise method takes a seed list of Hyperbahn routers and the name of
the service that clients will call into. After advertising, the Hyperbahn will
connect to your process and establish peers for service-to-service
communication.

Consult the Hyperbahn documentation for instructions on how to start a process
locally.

Debugging

Let’s spin up the service and make a request to it through Hyperbahn. Python
provides tcurl.py script, but we need to use the Node
version [https://github.com/uber/tcurl] for now since it has Thrift support.

$ python keyvalue/server.py &
$ tcurl -H /path/to/hyperbahn_host_list.json -t ~/keyvalue/thrift/keyvalue.thrift keyvalue-server KeyValue::setValue -3 '{"key": "hello", "value": "world"}'
$ tcurl -H /path/to/hyperbahn_host_list.json -t ~/keyvalue/thrift/keyvalue.thrift keyvalue-server KeyValue::getValue -3 '{"key": "hello"}'
$ tcurl -H /path/to/hyperbahn_host_list.json -t ~/keyvalue/thrift/keyvalue.thrift keyvalue-server KeyValue::getValue -3 '{"key": "hi"}'

Your service can now be accessed from any language over Hyperbahn + TChannel!

Python Client

Let’s make a client call from Python in keyvalue/client.py:

from tornado import gen, ioloop
from tchannel import TChannel, thrift

tchannel = TChannel('keyvalue-consumer')
service = thrift.load(
 path='examples/guide/keyvalue/service.thrift',
 service='keyvalue-server',
 hostport='localhost:8889',
)

@gen.coroutine
def run():

 yield tchannel.thrift(
 service.KeyValue.setValue("foo", "Hello, world!"),
)

 response = yield tchannel.thrift(
 service.KeyValue.getValue("foo"),
)

 print response.body

if __name__ == '__main__':
 ioloop.IOLoop.current().run_sync(run)

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TChannel for Python documentation

API Documentation

TChannel

	
class tchannel.TChannel(name, hostport=None, process_name=None, known_peers=None, trace=True, reuse_port=False, context_provider=None, tracer=None)[source]

	Manages connections and requests to other TChannel services.

Usage for a JSON client/server:

tchannel = TChannel(name='foo')

@tchannel.json.register
def handler(request):
 return {'foo': 'bar'}

response = yield tchannel.json(
 service='some-service',
 endpoint='endpoint',
 headers={'req': 'headers'},
 body={'req': 'body'},
)

	Variables:	
	thrift (ThriftArgScheme) – Make Thrift requests over TChannel and register Thrift handlers.

	json (JsonArgScheme) – Make JSON requests over TChannel and register JSON handlers.

	raw (RawArgScheme) – Make requests and register handles that pass raw bytes.

	
__init__(name, hostport=None, process_name=None, known_peers=None, trace=True, reuse_port=False, context_provider=None, tracer=None)[source]

	Note: In general only one TChannel instance should be used at a
time. Multiple TChannel instances are not advisable and could
result in undefined behavior.

	Parameters:	
	name (string) – How this application identifies itself. This is the name callers
will use to make contact, it is also what your downstream services
will see in their metrics.

	hostport (string) – An optional host/port to serve on, e.g., "127.0.0.1:5555. If
not provided an ephemeral port will be used. When advertising on
Hyperbahn you callers do not need to know your port.

	
call(*args, **kwargs)[source]

	Make low-level requests to TChannel services.

Note: Usually you would interact with a higher-level arg scheme
like tchannel.schemes.JsonArgScheme or
tchannel.schemes.ThriftArgScheme.

	
advertise(routers=None, name=None, timeout=None, router_file=None, jitter=None)[source]

	Advertise with Hyperbahn.

After a successful advertisement, Hyperbahn will establish long-lived
connections with your application. These connections are used to load
balance inbound and outbound requests to other applications on the
Hyperbahn network.

Re-advertisement happens periodically after calling this method (every
minute). Hyperbahn will eject us from the network if it doesn’t get a
re-advertise from us after 5 minutes.

This function may be called multiple times if it fails. If it
succeeds, all consecutive calls are ignored.

	Parameters:	
	routers (list) – A seed list of known Hyperbahn addresses to attempt contact with.
Entries should be of the form "host:port".

	name (string) – The name your application identifies itself as. This is usually
unneeded because in the common case it will match the name you
initialized the TChannel instance with. This is the identifier
other services will use to make contact with you.

	timeout – The timeout (in sec) for the initial advertise attempt.
Defaults to 30 seconds.

	jitter – Variance allowed in the interval per request. Defaults to 5
seconds. The jitter applies to the initial advertise request as
well.

	router_file – The host file that contains the routers information. The file
should contain a JSON stringified format of the routers parameter.
Either routers or router_file should be provided. If both provided,
a ValueError will be raised.

	Returns:	A future that resolves to the remote server’s response after the
first advertise finishes.

	Raises:	TimeoutError – When unable to make our first advertise request to Hyperbahn.
Subsequent requests may fail but will be ignored.

	
class tchannel.singleton.TChannel[source]

	Maintain a single TChannel instance per-thread.

	
tchannel_cls

	alias of TChannel

	
classmethod prepare(*args, **kwargs)[source]

	Set arguments to be used when instantiating a TChannel instance.

Arguments are the same as tchannel.TChannel.__init__().

	
classmethod reset(*args, **kwargs)[source]

	Undo call to prepare, useful for testing.

	
classmethod get_instance()[source]

	Get a configured, thread-safe, singleton TChannel instance.

	Returns tchannel.TChannel:

		

	
class tchannel.Request(body=None, headers=None, transport=None, endpoint=None, service=None, timeout=None)[source]

	A TChannel request.

This is sent by callers and received by registered handlers.

	Variables:	
	body – The payload of this request. The type of this attribute depends on the
scheme being used (e.g., JSON, Thrift, etc.).

	headers – A dictionary of application headers. This should be a mapping of
strings to strings.

	transport – Protocol-level transport headers. These are used for routing over
Hyperbahn.

The most useful piece of information here is probably
request.transport.caller_name, which is the identity of the
application that created this request.

	service – Name of the service being called. Inside request handlers, this is
usually the name of “this” service itself. However, for services that
simply forward requests to other services, this is the name of the
target service.

	timeout – Amount of time (in seconds) within which this request is expected to
finish.

	
class tchannel.Response(body=None, headers=None, transport=None, status=None)[source]

	A TChannel response.

This is sent by handlers and received by callers.

	Variables:	
	body – The payload of this response. The type of this attribute depends on the
scheme being used (e.g., JSON, Thrift, etc.).

	headers – A dictionary of application headers. This should be a mapping of
strings to strings.

	transport – Protocol-level transport headers. These are used for routing over
Hyperbahn.

Serialization Schemes

Thrift

	
class tchannel.schemes.ThriftArgScheme(tchannel)[source]

	Handler registration and serialization for Thrift.

Use tchannel.thrift.load() to parse your Thrift IDL and compile
it into a module dynamically.

from tchannel import thrift

keyvalue = thrift.load('keyvalue.thrift', service='keyvalue')

To register a Thrift handler, use the register() decorator, providing
a reference to the compiled service as an argument. The name of the
service method should match the name of the decorated function.

tchannel = TChannel(...)

@tchannel.thrift.register(keyvalue.KeyValue)
def setValue(request):
 data[request.body.key] = request.body.value

Use methods on the compiled service to generate requests to remote
services and execute them via TChannel.thrift().

response = yield tchannel.thrift(
 keyvalue.KeyValue.setValue(key='foo', value='bar')
)

	
__call__(*args, **kwargs)[source]

	Make a Thrift TChannel request.

Returns a Response containing the return value of the Thrift
call (if any). If the remote server responded with a Thrift exception,
that exception is raised.

	Parameters:	
	request (string) – Request obtained by calling a method on service objects generated
by tchannel.thrift.load().

	headers (dict) – Dictionary of header key-value pairs.

	timeout (float) – How long to wait (in seconds) before raising a TimeoutError -
this defaults to tchannel.glossary.DEFAULT_TIMEOUT.

	retry_on (string) – What events to retry on - valid values can be found in
tchannel.retry.

	retry_limit (int) – How many attempts should be made (in addition to the initial
attempt) to re-send this request when retryable error conditions
(specified by retry_on) are encountered.

Defaults to tchannel.retry.DEFAULT_RETRY_LIMIT (4).

Note that the maximum possible time elapsed for a request is thus
(retry_limit + 1) * timeout.

	shard_key (string) – Set the sk transport header for Ringpop request routing.

	trace (int) – Flags for tracing.

	hostport (string) – A ‘host:port’ value to use when making a request directly to a
TChannel service, bypassing Hyperbahn. This value takes precedence
over the hostport specified to
tchannel.thrift.load().

	routing_delegate – Name of a service to which the request router should forward the
request instead of the service specified in the call req.

	caller_name – Name of the service making the request. Defaults to the name
provided when the TChannel was instantiated.

	Return type:	Response

	
tchannel.thrift.load(path, service=None, hostport=None, module_name=None)[source]

	Loads the Thrift file at the specified path.

The file is compiled in-memory and a Python module containing the result
is returned. It may be used with TChannel.thrift. For example,

from tchannel import TChannel, thrift

Load our server's interface definition.
donuts = thrift.load(path='donuts.thrift')

We need to specify a service name or hostport because this is a
downstream service we'll be calling.
coffee = thrift.load(path='coffee.thrift', service='coffee')

tchannel = TChannel('donuts')

@tchannel.thrift.register(donuts.DonutsService)
@tornado.gen.coroutine
def submitOrder(request):
 args = request.body

 if args.coffee:
 yield tchannel.thrift(
 coffee.CoffeeService.order(args.coffee)
)

 # ...

The returned module contains, one top-level type for each struct, enum,
union, exeption, and service defined in the Thrift file. For each service,
the corresponding class contains a classmethod for each function defined
in that service that accepts the arguments for that function and returns a
ThriftRequest capable of being sent via TChannel.thrift.

For more information on what gets generated by load, see thriftrw [http://thriftrw.readthedocs.org/en/latest/].

Note that the path accepted by load must be either an absolute
path or a path relative to the the current directory. If you need to
refer to Thrift files relative to the Python module in which load was
called, use the __file__ magic variable.

Given,
#
foo/
myservice.thrift
bar/
x.py
#
Inside foo/bar/x.py,

path = os.path.join(
 os.path.dirname(__file__), '../myservice.thrift'
)

The returned value is a valid Python module. You can install the module by
adding it to the sys.modules dictionary. This will allow importing
items from this module directly. You can use the __name__ magic
variable to make the generated module a submodule of the current module.
For example,

foo/bar.py

import sys
from tchannel import thrift

donuts = = thrift.load('donuts.thrift')
sys.modules[__name__ + '.donuts'] = donuts

This installs the module generated for donuts.thrift as the module
foo.bar.donuts. Callers can then import items from that module
directly. For example,

foo/baz.py

from foo.bar.donuts import DonutsService, Order

def baz(tchannel):
 return tchannel.thrift(
 DonutsService.submitOrder(Order(..))
)

	Parameters:	
	service (str) – Name of the service that the Thrift file represents. This name will be
used to route requests through Hyperbahn.

	path (str) – Path to the Thrift file. If this is a relative path, it must be
relative to the current directory.

	hostport (str) – Clients can use this to specify the hostport at which the service can
be found. If omitted, TChannel will route the requests through known
peers. This value is ignored by servers.

	module_name (str) – Name used for the generated Python module. Defaults to the name of the
Thrift file.

	
tchannel.thrift_request_builder(*args, **kwargs)[source]

	Provide TChannel compatibility with Thrift-generated modules.

The service this creates is meant to be used with TChannel like so:

from tchannel import TChannel, thrift_request_builder
from some_other_service_thrift import some_other_service

tchannel = TChannel('my-service')

some_service = thrift_request_builder(
 service='some-other-service',
 thrift_module=some_other_service
)

resp = tchannel.thrift(
 some_service.fetchPotatoes()
)

Deprecated since version 0.18.0: Please switch to tchannel.thrift.load().

Warning

This API is deprecated and will be removed in a future version.

	Parameters:	
	service (string) – Name of Thrift service to call. This is used internally for
grouping and stats, but also to route requests over Hyperbahn.

	thrift_module – The top-level module of the Apache Thrift generated code for
the service that will be called.

	hostport (string) – When calling the Thrift service directly, and not over Hyperbahn,
this ‘host:port’ value should be provided.

	thrift_class_name (string) – When the Apache Thrift generated Iface class name does not match
thrift_module, then this should be provided.

JSON

	
class tchannel.schemes.JsonArgScheme(tchannel)[source]

	Semantic params and serialization for json.

	
__call__(*args, **kwargs)[source]

	Make JSON TChannel Request.

	Parameters:	
	service (string) – Name of the service to call.

	endpoint (string) – Endpoint to call on service.

	body (string) – A raw body to provide to the endpoint.

	headers (dict) – Dictionary of header key-value pairs.

	timeout (float) – How long to wait (in seconds) before raising a TimeoutError -
this defaults to tchannel.glossary.DEFAULT_TIMEOUT.

	retry_on (string) – What events to retry on - valid values can be found in
tchannel.retry.

	retry_limit (int) – How many attempts should be made (in addition to the initial
attempt) to re-send this request when retryable error conditions
(specified by retry_on) are encountered.

Defaults to tchannel.retry.DEFAULT_RETRY_LIMIT (4).

Note that the maximum possible time elapsed for a request is thus
(retry_limit + 1) * timeout.

	hostport (string) – A ‘host:port’ value to use when making a request directly to a
TChannel service, bypassing Hyperbahn.

	routing_delegate – Name of a service to which the request router should forward the
request instead of the service specified in the call req.

	caller_name – Name of the service making the request. Defaults to the name
provided when the TChannel was instantiated.

	Return type:	Response

Raw

	
class tchannel.schemes.RawArgScheme(tchannel)[source]

	Semantic params and serialization for raw.

	
__call__(*args, **kwargs)[source]

	Make a raw TChannel request.

The request’s headers and body are treated as raw bytes and not
serialized/deserialized.

The request’s headers and body are treated as raw bytes and not
serialized/deserialized.

	Parameters:	
	service (string) – Name of the service to call.

	endpoint (string) – Endpoint to call on service.

	body (string) – A raw body to provide to the endpoint.

	headers (string) – A raw headers block to provide to the endpoint.

	timeout (float) – How long to wait (in seconds) before raising a TimeoutError -
this defaults to tchannel.glossary.DEFAULT_TIMEOUT.

	retry_on (string) – What events to retry on - valid values can be found in
tchannel.retry.

	retry_limit (int) – How many attempts should be made (in addition to the initial
attempt) to re-send this request when retryable error conditions
(specified by retry_on) are encountered.

Defaults to tchannel.retry.DEFAULT_RETRY_LIMIT (4).

Note that the maximum possible time elapsed for a request is thus
(retry_limit + 1) * timeout.

	hostport (string) – A ‘host:port’ value to use when making a request directly to a
TChannel service, bypassing Hyperbahn.

	routing_delegate – Name of a service to which the request router should forward the
request instead of the service specified in the call req.

	caller_name – Name of the service making the request. Defaults to the name
provided when the TChannel was instantiated.

	Return type:	Response

Exception Handling

Errors

	
tchannel.errors.TIMEOUT = 1

	The request timed out.

	
tchannel.errors.CANCELED = 2

	The request was canceled.

	
tchannel.errors.BUSY = 3

	The server was busy.

	
tchannel.errors.BAD_REQUEST = 6

	The request was bad.

	
tchannel.errors.NETWORK_ERROR = 7

	There was a network error when sending the request.

	
tchannel.errors.UNHEALTHY = 8

	The server handling the request is unhealthy.

	
tchannel.errors.FATAL = 255

	There was a fatal protocol-level error.

	
exception tchannel.errors.TChannelError(description=None, id=None, tracing=None)[source]

	Bases: exceptions.Exception

A TChannel-generated exception.

	Variables:	code – The error code for this error. See the Specification [http://tchannel.readthedocs.org/en/latest/protocol/#code1_1] for a
description of these codes.

	
classmethod from_code(code, **kw)[source]

	Construct a TChannelError instance from an error code.

This will return the appropriate class type for the given code.

	
exception tchannel.errors.RetryableError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.TChannelError

An error where the original request is always safe to retry.

It is always safe to retry a request with this category of errors. The
original request was never handled.

	
exception tchannel.errors.MaybeRetryableError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.TChannelError

An error where the original request may be safe to retry.

The original request may have reached the intended service. Hence, the
request should only be retried if it is known to be idempotent [https://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning].

	
exception tchannel.errors.NotRetryableError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.TChannelError

An error where the original request should not be re-sent.

Something was fundamentally wrong with the request and it should not be
retried.

	
exception tchannel.errors.ReadError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.FatalProtocolError

Raised when there is an error while reading input.

	
exception tchannel.errors.InvalidChecksumError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.FatalProtocolError

Represent invalid checksum type in the message

	
exception tchannel.errors.NoAvailablePeerError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.RetryableError

Represents a failure to find any peers for a request.

	
exception tchannel.errors.AlreadyListeningError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.FatalProtocolError

Raised when attempting to listen multiple times.

	
exception tchannel.errors.OneWayNotSupportedError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.BadRequestError

Raised when a one-way Thrift procedure is called.

	
exception tchannel.errors.ValueExpectedError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.BadRequestError

Raised when a non-void Thrift response contains no value.

	
exception tchannel.errors.SingletonNotPreparedError(description=None, id=None, tracing=None)[source]

	Bases: tchannel.errors.TChannelError

Raised when calling get_instance before calling prepare.

	
exception tchannel.errors.ServiceNameIsRequiredError[source]

	Bases: exceptions.Exception

Raised when service name is empty or None.

Retry Behavior

These values can be passed as the retry_on behavior to
tchannel.TChannel.call().

	
tchannel.retry.CONNECTION_ERROR = u'c'

	Retry the request on failures to connect to a remote host. This is the
default retry behavior.

	
tchannel.retry.NEVER = u'n'

	Never retry the request.

	
tchannel.retry.TIMEOUT = u't'

	Retry the request on timeouts waiting for a response.

	
tchannel.retry.CONNECTION_ERROR_AND_TIMEOUT = u'ct'

	Retry the request on failures to connect and timeouts after connecting.

	
tchannel.retry.DEFAULT_RETRY_LIMIT = 4

	The default number of times to retry a request. This is in addition to the
original request.

Synchronous Client

	
class tchannel.sync.TChannel(name, hostport=None, process_name=None, known_peers=None, trace=False, threadloop=None)[source]

	Make synchronous TChannel requests.

This client does not support incoming requests – it is a uni-directional
client only.

The client is implemented on top of the Tornado-based implementation and
offloads IO to a thread running an IOLoop next to your process.

Usage mirrors the TChannel class.

from tchannel.sync import TChannel

tchannel = TChannel(name='my-synchronous-service')

Advertise with Hyperbahn.
This returns a future. You may want to block on its result,
particularly if you want you app to die on unsuccessful
advertisement.
tchannel.advertise(routers)

keyvalue is the result of a call to ``tchannel.thrift.load``.
future = tchannel.thrift(
 keyvalue.KeyValue.getItem('foo'),
 timeout=0.5, # 0.5 seconds
)

result = future.result()

Fanout can be accomplished by using as_completed from the
concurrent.futures module:

from concurrent.futures import as_completed

from tchannel.sync import TChannel

tchannel = TChannel(name='my-synchronous-service')

futures = [
 tchannel.thrift(service.getItem(item))
 for item in ('foo', 'bar')
]

for future in as_completed(futures):
 print future.result()

(concurrent.futures is native to Python 3; pip install futures if
you’re using Python 2.x.)

	
advertise(routers=None, name=None, timeout=None, router_file=None, jitter=None)[source]

	Advertise with Hyperbahn.

After a successful advertisement, Hyperbahn will establish long-lived
connections with your application. These connections are used to load
balance inbound and outbound requests to other applications on the
Hyperbahn network.

Re-advertisement happens periodically after calling this method (every
minute). Hyperbahn will eject us from the network if it doesn’t get a
re-advertise from us after 5 minutes.

This function may be called multiple times if it fails. If it
succeeds, all consecutive calls are ignored.

	Parameters:	
	routers (list) – A seed list of known Hyperbahn addresses to attempt contact with.
Entries should be of the form "host:port".

	name (string) – The name your application identifies itself as. This is usually
unneeded because in the common case it will match the name you
initialized the TChannel instance with. This is the identifier
other services will use to make contact with you.

	timeout – The timeout (in sec) for the initial advertise attempt.
Defaults to 30 seconds.

	jitter – Variance allowed in the interval per request. Defaults to 5
seconds. The jitter applies to the initial advertise request as
well.

	router_file – The host file that contains the routers information. The file
should contain a JSON stringified format of the routers parameter.
Either routers or router_file should be provided. If both provided,
a ValueError will be raised.

	Returns:	A future that resolves to the remote server’s response after the
first advertise finishes.

	Raises:	TimeoutError – When unable to make our first advertise request to Hyperbahn.
Subsequent requests may fail but will be ignored.

	
call(*args, **kwargs)[source]

	Make low-level requests to TChannel services.

Note: Usually you would interact with a higher-level arg scheme
like tchannel.schemes.JsonArgScheme or
tchannel.schemes.ThriftArgScheme.

	
class tchannel.sync.singleton.TChannel[source]

	
	
tchannel_cls

	alias of TChannel

	
classmethod get_instance()[source]

	Get a configured, thread-safe, singleton TChannel instance.

	Returns:	tchannel.sync.TChannel

	
prepare(*args, **kwargs)[source]

	Set arguments to be used when instantiating a TChannel instance.

Arguments are the same as tchannel.TChannel.__init__().

	
reset(*args, **kwargs)[source]

	Undo call to prepare, useful for testing.

Testing

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TChannel for Python documentation

FAQ

Can I register an endpoint that accepts all requests?

The fallback endpoint is the endpoint called when an unrecognized request is
received. By default, the fallback endpoint simply returns a
BadRequestError to the caller. This behavior may be changed by
registering an endpoint with TChannel.FALLBACK.

from tchannel import TChannel

server = TChannel(name='myservice')

@server.register(TChannel.FALLBACK)
def handler(request):
 # ...

This may be used to implement a TChannel server that can handle requests to all
endpoints. Note that for the fallback endpoint, you have access to the raw
bytes of the headers and the body. These must be serialized/deserialized
manually.

Why do I keep getting a “Cannot serialize MyType into a ‘MyType’” error?

You are trying to mix code generated by Apache Thrift with the module generated
by tchannel.thrift.load(). These are two separate ways of using Thrift
with TChannel and the classes generated by either cannot be mixed and matched.
You should be using only one of these approaches to interact with a specific
service.

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	TChannel for Python documentation

Changelog

Changes by Version

1.3.2 (unreleased)

	Nothing changed yet.

1.3.1 (2018-06-11)

	Fixed a bug which caused servers to send requests to peers that sent requests
to them.

1.3.0 (2017-11-20)

	Added OpenTracing client interceptor support for outbound requests.

1.2.0 (2017-10-19)

	Hook methods can now be implemented as coroutines.

	Added a new event (before_serialize_request_headers) that can be hooked. This
is intended to allow application headers to be modified before requests are
sent.

1.1.0 (2017-04-10)

	Added messages with ttl, service, and hostport information to TimeoutErrors

1.0.2 (2017-03-20)

	Fixed a race condition where the on_close callback for tchannel connections
would not be called if the connection was already closed.

	Fixed a bug where the reference to the next node would not be cleared when
nodes were pulled from message queues (Introducing a potential memory leak).

1.0.1 (2016-12-14)

	Add str functions to Peer and PeerClientOperation for easier debugging in
exc_info

	Updated internal APIs to no longer depend on the PeerGroup add function
and to use the get function for creating new peers instead.

	Fixed a bug where choosing a hostport directly for a downstream call would
add that peer to the “core” peers which are used for regular calls.
Now choosing the hostport directly will create a peer but will exclude it
from selection.

1.0.0 (2016-11-17)

	Committing to existing API. We’re calling this a 1.0.

0.30.6 (2016-11-14)

	Fixed a bug which would cause handshake timeouts to bubble up to the caller
rather than retry a different peer.

0.30.5 (2016-11-10)

	Fixed a bug which would cause assertion errors if a connection to a peer
disconnected shortly after a handshake.

0.30.4 (2016-11-03)

	Time out handshake attempts for outgoing connections after 5 seconds.

	Fixed a regression where large requests would block small requests until they
were completely written to the wire.

	Propagate message sending errors up to the caller. This should greatly reduce
the number of TimeoutError: None issues seen by users and show the root
cause instead.

	Fail TChannel instantiation if the service name is empty or None.

0.30.3 (2016-10-24)

	Revert 0.30.2. The previous release may have introduced a memory leak.

0.30.2 (2016-10-12)

	Propagate message sending errors up to the caller. This should greatly reduce
the number of TimeoutError: None issues seen by users and show the root
cause instead.

	Fail TChannel instantiation if the service name is empty or None.

0.30.1 (2016-10-05)

	Relax opentracing upper bound to next major.

	Never send requests to ephemeral peers.

0.30.0 (2016-09-29)

	Pass span.kind tag when calling start_span(), not after the span was started.

	Add jitter argument to advertise().

0.29.1 (2016-10-05)

	Never send requests to ephemeral peers.

	Relax opentracing upper bound to next major.

0.29.0 (2016-09-12)

	Change default setting for tracing to be enabled.

	You can now specify an override for a request’s cn transport header using
the caller_name argument of the call(), json(), raw(), and
thrift() methods of TChannel.

0.28.3 (2016-10-05)

	Never send requests to ephemeral peers.

	Relax opentracing upper bound to next major.

0.28.2 (2016-09-12)

	Bug fix: Tracing headers will no longer be added for raw requests if the
headers are unparsed.

0.28.1 (2016-08-19)

	Ignore tracing fields with empty/zero trace ID.

0.28.0 (2016-08-17)

	Don’t send more Hyperbahn advertise requests if an existing request is
ongoing.

	Add jitter between Hyperbahn consecutive advertise requests.

	If the initial advertise request fails, propagate the original error instead
of a timeout error.

0.27.4 (2016-10-05)

	Never send requests to ephemeral peers.

	Relax opentracing upper bound to next major.

0.27.3 (2016-08-19)

	Ignore tracing fields with empty/zero trace ID.

0.27.2 (2016-08-17)

	VCR should ignore tracing headers when matching requests. This will allow
replaying requests with or without tracing regardless of whether the original
request was recorded with it.

0.27.1 (2016-08-10)

	Bug fix: set Trace.parent_id to 0 if it’s None

0.27.0 (2016-08-08)

	Native integration with OpenTracing (for real this time)

	Replace tcollector and explicit trace reporting with OpenTracing

0.26.1 (2016-10-05)

	Never send requests to ephemeral peers.

0.26.0 (2016-07-13)

	VCR: use_cassette now uses cached copies of cassettes if their contents
have not changed. This should improve performance for large cassette files.

0.25.2 (2016-10-05)

	Never send requests to ephemeral peers.

0.25.1 (2016-06-30)

	Fixed a bug where the application error status code was not being copied into
Response objects.

0.25.0 (2016-06-16)

	Support for OpenTracing.

0.24.1 (2016-10-05)

	Never send requests to ephemeral peers.

0.24.0 (2016-04-19)

	Added TChannel.host and TChannel.port.

	Added TChannel.close() and TChannel.is_closed().

0.23.2 (2016-10-05)

	Never send requests to ephemeral peers.

0.23.1 (2016-04-14)

	Fixed tornado version constraint causing reuse_port to be missing,
updated constraint to tornado>=4.3,<5.

	Only pass reuse_port to bind_sockets if it’s set to True.

0.23.0 (2016-04-14)

	Added an opt-in feature to use the SO_REUSEPORT socket option
for TChannel servers. Use reuse_port=True when instantiating a
TChannel.

0.22.4 (2016-10-05)

	Never send requests to ephemeral peers.

0.22.3 (2016-04-07)

	Fixed a bug where type mismatch for timeouts could cause a crash.

0.22.2 (2016-04-06)

	VCR now respects the timeout specified on the original request. Timeouts in
making the requests while recording now propagate as TimeoutError
exceptions rather than RemoteServiceError.

	Reduced a warning for unconsumed error messages to info.

	Made UnexpectedError’s message a little more debuggable.

0.22.1 (2016-04-06)

	Added a timeout to the VCR proxy call.

	Fixed a bug where tests would time out if the VCR server failed to start. The
VCR server failure is now propagated to the caller.

0.22.0 (2016-03-31)

	Peer selection is now constant time instead of linear time. This should
significantly reduce CPU load per request.

	Fixed a bug where certain errors while reading requests would propagate as
TimeoutErrors.

	Attempting to register endpoints against a synchronous TChannel now logs an
INFO level message.

	Reduced default advertisement interval to 3 minutes.

0.21.10 (2016-03-17)

	Zipkin traces now include a server-side ‘cn’ annotation to identify callers.

	Reduced “unconsumed message” warnings to INFO. These are typically generated
when Hyperbahn garbage collects your process due to a timed-out
advertisement.

	Handshake timeouts were incorrectly being surfaced as StreamClosedError but
are now raised as NetworkError.

	Reduced default tracing sample rate from 100% to 1%.

0.21.9 (2016-03-14)

	Fixed a bug that caused silent failures when a write attempt was made to a
closed connection.

	Reduce StreamClosedError log noisiness for certain scenarios.

	Make TChannel.advertise idempotent and thread-safe.

0.21.8 (2016-03-10)

	Reduce read errors due to clients disconnecting to INFO from ERROR.

0.21.7 (2016-03-08)

	Fixed an unhelpful stack trace on failed reads.

0.21.6 (2016-03-08)

	Fixed a logging error on failed reads.

0.21.5 (2016-03-08)

	Tornado 4.2 was listed as a requirement but this was corrected to be 4.3
which introduced the locks module.

	Fixed in issue where clients could incorrectly time out when reading large
response bodies. This was due to response fragments being dropped due to
out-of-order writes; writes are now serialized on a per-connection basis.

0.21.4 (2016-02-15)

	Fixed noisy logging of late responses for requests that timed out locally.

0.21.3 (2016-01-22)

	Attempting to register endpoints against a synchronous TChannel is now a no-op instead of a crash.

0.21.2 (2016-01-05)

	The synchronous client will no longer start a thread when the TChannel
instance is initialized. This resolves an issue where an application could
hang indefinitely if it instantiated a synchronous TChannel at import
time.

0.21.1 (2015-12-29)

	Fixed a bug in Zipkin instrumentation that would cause CPU spikes due to an
infinite loop during downstream requests.

0.21.0 (2015-12-10)

	Add support for zipkin trace sampling.

	tchannel.TChannel.FALLBACK may now be used to register fallback endpoints
which are called for requests with unrecognized endpoints. For more
information, see Can I register an endpoint that accepts all requests?

	Expose timeout and service attributes on Request objects inside
endpoint handlers.

	Disable the retry for all zipkin trace submit.

	Fix Thrift service inheritance bug which caused parent methods to not be
propagated to child services.

	VCR recording should not fail if the destination directory for the cassette
does not exist.

	Fix bug which incorrectly encoded JSON arg scheme headers in the incorrect
format.

	Add support for rd transport header.

	BREAKING - Support unit testing endpoints by calling the handler
functions directly. This is enabled by changing tchannel.thrift.register
to return the registered function unmodified. See Upgrade Guide for more
details.

0.20.2 (2015-11-25)

	Lower the log level for Hyperbahn advertisement failures that can be retried.

	Include the full stack trace when Hyperbahn advertisement failures are logged.

	Include the error message for unexpected server side failures in the error returned to the client.

0.20.1 (2015-11-12)

	Fix bug which prevented requests from being retried if the candidate
connection was previously terminated.

0.20.0 (2015-11-10)

	Support thriftrw 1.0.

	Drop explicit dependency on the futures library.

0.19.0 (2015-11-06)

	Add tchannel version & language information into init message header when
initialize connections between TChannel instances.

0.18.3 (2015-11-03)

	Reduced Hyperbahn advertisement per-request timeout to 2 seconds.

	Removed an unncessary exception log for connection failures.

0.18.2 (2015-10-28)

	Reduced Hyperbahn advertisement failures to warnings.

0.18.1 (2015-10-28)

	Improved performance of peer selection logic.

	Fixed a bug which caused the message ID and tracing for incoming error frames
to be ignored.

	Prefer using incoming connections on peers instead of outgoing connections.

0.18.0 (2015-10-20)

	Deprecated warnings will now sound for tchannel.thrift.client_for,
tchannel.thrift_request_builder, and tchannel.tornado.TChannel - these
APIs will be removed soon - be sure to move to tchannel.thrift.load in
conjunction with tchannel.TChannel.

	Added singleton facility for maintaining a single TChannel instance per thread.
See tchannel.singleton.TChannel, tchannel.sync.singleton.TChannel, or check
the guide for an example how of how to use. Note this feature is optional.

	Added Thrift support to tcurl.py and re-worked the script’s arguments.

	Specify which request components to match on with VCR, for example, ‘header’,
‘body’, etc. See tchannel.testing.vcr.use_cassette.

	Removed tchannel.testing.data module.

	Changed minimum required version of Tornado to 4.2.

	tchannel.tornado.TChannel.close is no longer a coroutine.

	BREAKING - headers for JSON handlers are not longer JSON blobs but are
instead maps of strings to strings. This mirrors behavior for Thrift
handlers.

	Fixed bug that caused server to continue listening for incoming connections
despite closing the channel.

	Explicit destinations for ThriftArgScheme may now be specified on a
per-request basis by using the hostport keyword argument.

	Only listen on IPv4, until official IPv6 support arrives.

0.17.11 (2015-10-19)

	Fix a bug that caused after_send_error event to never be fired.

	Request tracing information is now propagated to error responses.

0.17.10 (2015-10-16)

	Support thriftrw 0.5.

0.17.9 (2015-10-15)

	Fix default timeout incorrectly set to 16 minutes, now 30 seconds.

0.17.8 (2015-10-14)

	Revert timeout changes from 0.17.6 due to client incompatibilities.

0.17.7 (2015-10-14)

	Network failures while connecting to randomly selected hosts should be
retried with other hosts.

0.17.6 (2015-10-14)

	Fixed an issue where timeouts were being incorrectly converted to seconds.

0.17.5 (2015-10-12)

	Set default checksum to CRC32C.

0.17.4 (2015-10-12)

	Updated vcr to use thriftrw-generated code. This should resolve some
unicode errors during testing with vcr.

0.17.3 (2015-10-09)

	Fixed uses of add_done_callback that should have been add_future.
This was preventing propper request/response interleaving.

	Added support for thriftrw 0.4.

0.17.2 (2015-09-18)

	VCR no longer matches on hostport to better support ephemeral ports.

	Fixed a bug with thriftrw where registering an endpoint twice could fail.

0.17.1 (2015-09-17)

	Made “service” optional for thrift.load(). The first argument should be a
path, but backwards compatibility is provided for 0.17.0.

0.17.0 (2015-09-14)

	It is now possible to load Thrift IDL files directly with
tchannel.thrift.load. This means that the code generation step using the
Apache Thrift compiler can be skipped entirely. Check the API documentation
for more details.

	Accept host file in advertise: TChannel.advertise() now accepts
a parameter, router_file that contains a JSON stringified format
of the router list.

	Add TChannel.is_listening method to return whether the tchannel instance
is listening or not.

0.16.10 (2015-10-15)

	Fix default timeout incorrectly set to 16 minutes, now 30 seconds.

0.16.9 (2015-10-15)

	Network failures while connecting to randomly selected hosts should be
retried with other hosts.

0.16.8 (2015-10-14)

	Revert timeout changes from 0.16.7 due to client incompatibilities.

0.16.7 (2015-10-14)

	Fixed an issue where timeouts were being incorrectly converted to seconds.

0.16.6 (2015-09-14)

	Fixed a bug where Zipkin traces were not being propagated correctly in
services using the tchannel.TChannel API.

0.16.5 (2015-09-09)

	Actually fix status code being unset in responses when using the Thrift
scheme.

	Fix request TTLs not being propagated over the wire.

0.16.4 (2015-09-09)

	Fix bug where status code was not being set correctly on call responses for
application errors when using the Thrift scheme.

0.16.3 (2015-09-09)

	Make TChannel.listen thread-safe and idempotent.

0.16.2 (2015-09-04)

	Fix retry_limit in TChannel.call not allowing 0 retries.

0.16.1 (2015-08-27)

	Fixed a bug where the ‘not found’ handler would incorrectly return
serialization mismatch errors..

	Fixed a bug which prevented VCR support from working with the sync client.

	Fixed a bug in VCR that prevented it from recording requests made by the sync
client, and requests made with hostport=None.

	Made client_for compatible with tchannel.TChannel.

	Brought back tchannel.sync.client_for for backwards compatibility.

0.16.0 (2015-08-25)

	Introduced new server API through methods
tchannel.TChannel.thrift.register, tchannel.TChannel.json.register,
and tchannel.TChannel.raw.register - when these methods are used,
endpoints are passed a tchannel.Request object, and are expected to
return a tchannel.Response object or just a response body. The deprecated
tchannel.tornado.TChannel.register continues to function how it did
before. Note the breaking change to the top-level TChannel on the next line.

	Fixed a crash that would occur when forking with an unitialized TChannel
instance.

	Add hooks property in the tchannel.TChannel class.

	BREAKING - tchannel.TChannel.register no longer has the same
functionality as tchannel.tornado.TChannel.register, instead it exposes
the new server API. See the upgrade guide for details.

	BREAKING - remove retry_delay option in the tchannel.tornado.send
method.

	BREAKING - error types have been reworked significantly. In particular,
the all-encompassing ProtocolError has been replaced with more
granualar/actionable exceptions. See the upgrade guide for more info.

	BREAKING - Remove third proxy argument from the server handler
interface.

	BREAKING - ZipkinTraceHook is not longer registered by default.

	BREAKING - tchannel.sync.client.TChannelSyncClient replaced with
tchannel.sync.TChannel.

0.15.2 (2015-08-07)

	Raise informative and obvious ValueError when anything
but a map[string]string is passed as headers to the TChannel.thrift method.

	First param, request, in tchannel.thrift method is required.

0.15.1 (2015-08-07)

	Raise tchannel.errors.ValueExpectedError when calling a non-void Thrift procedure
that returns no value.

0.15.0 (2015-08-06)

	Introduced new top level tchannel.TChannel object, with new request methods
call, raw, json, and thrift. This will eventually replace the
akward request / send calling pattern.

	Introduced tchannel.thrift_request_builder function for creating a
request builder to be used with the tchannel.TChannel.thrift function.

	Introduced new simplified examples under the examples/simple directory, moved
the Guide’s examples to examples/guide, and deleted the remaining examples.

	Added ThriftTest.thrift and generated Thrift code to tchannel.testing.data for
use with examples and playing around with TChannel.

	Fix JSON arg2 (headers) being returned a string instead of a dict.

0.14.0 (2015-08-03)

	Implement VCR functionality for outgoing requests. Check the documentation
for tchannel.testing.vcr for details.

	Add support for specifying fallback handlers via TChannel.register by
specifying TChannel.fallback as the endpoint.

	Fix bug in Response where code expected an object instead of an
integer.

	Fix bug in Peer.close where a future was expected instead of None.

0.13.0 (2015-07-23)

	Add support for specifying transport headers for Thrift clients.

	Always pass shardKey for TCollector tracing calls. This fixes Zipkin tracing for Thrift clients.

0.12.0 (2015-07-20)

	Add TChannel.is_listening() to determine if listen has been called.

	Calling TChannel.listen() more than once raises a tchannel.errors.AlreadyListeningError.

	TChannel.advertise() will now automatically start listening for connections
if listen() has not already been called.

	Use threadloop==0.4.

	Removed print_arg.

0.11.2 (2015-07-20)

	Fix sync client’s advertise - needed to call listen in thread.

0.11.1 (2015-07-17)

	Fix sync client using 0.0.0.0 host which gets rejected by Hyperbahn during advertise.

0.11.0 (2015-07-17)

	Added advertise support to sync client in tchannel.sync.TChannelSyncClient.advertise.

	BREAKING - renamed router argument to routers in tchannel.tornado.TChannel.advertise.

0.10.3 (2015-07-13)

	Support PyPy 2.

	Fix bugs in TChannel.advertise.

0.10.2 (2015-07-13)

	Made TChannel.advertise retry on all exceptions.

0.10.1 (2015-07-10)

	Previous release was broken with older versions of pip.

0.10.0 (2015-07-10)

	Add exponential backoff to TChannel.advertise.

	Make transport metadata available under request.transport on the
server-side.

0.9.1 (2015-07-09)

	Use threadloop 0.3.* to fix main thread not exiting when tchannel.sync.TChannelSyncClient is used.

0.9.0 (2015-07-07)

	Allow custom handlers for unrecognized endpoints.

	Released tchannel.sync.TChannelSyncClient and tchannel.sync.thrift.client_for.

0.8.5 (2015-06-30)

	Add port parameter for TChannel.listen.

0.8.4 (2015-06-17)

	Fix bug where False and False-like values were being treated as None in
Thrift servers.

0.8.3 (2015-06-15)

	Add as attribute to the response header.

0.8.2 (2015-06-11)

	Fix callable traceflag being propagated to the serializer.

	Fix circular imports.

	Fix TimeoutError retry logic.

0.8.1 (2015-06-10)

	Initial release.

Upgrade Guide

Migrating to a version of TChannel with breaking changes? This guide documents
what broke and how to safely migrate to newer versions.

From 0.20 to 0.21

	tchannel.thrift.register returns the original function as-is instead of
the wrapped version. This allows writing unit tests that call the handler
function directly.

Previously, if you used the tchannel.thrift.register decorator to
register a Thrift endpoint and then called that function directly from a
test, it would return a Response object if the call succeeded or
failed with an expected exception (defined in the Thrift IDL). For example,

service KeyValue {
string getValue(1: string key)
throws (1: ValidationError invalid)
}

@tchannel.thrift.register(kv.KeyValue)
def getValue(request):
 key = request.body.key
 if key == 'invalid':
 raise kv.ValidationError()
 result = # ...
 return result

response = getValue(make_request(key='invalid'))
if response.body.invalid:
 # ...
else:
 result = response.body.success

With 0.21, we have changed tchannel.thrift.register to return the
unmodified function so that you can call it directly and it will behave
as expected.

@tchannel.thrift.register(kv.KeyValue)
def getValue(request):
 # ...

try:
 result = getValue(make_request(key='invalid'))
except kv.ValidationError:
 # ...

From 0.19 to 0.20

	No breaking changes.

From 0.18 to 0.19

	No breaking changes.

From 0.17 to 0.18

	request.headers in a JSON handler is no longer a JSON blob. Instead it is
a dictionary mapping strings to strings. This matches the Thrift
implementation. If your headers include richer types like lists or ints,
you’ll need to coordinate with your callers to no longer pass headers as JSON
blobs. The same applies to JSON requsts; rich headers will now fail to
serialize.

	If you were accessing request_cls or response_cls directly from a
service method in a module generated by tchannel.thrift.load, you can no
longer do that. The request_cls and response_cls attributes are
internal details of the implementation and have been changed to protected.
You should only ever use the service method directly.

Before:

my_service.doSomething.request_cls(..)

After:

my_service.doSomething(..)

Note that request_cls gives you just an object containing the method
arguments. It does not include any of the other information needed to make
the request. So if you were using it to make requests, it wouldn’t have
worked anyway.

From 0.16 to 0.17

	No breaking changes.

From 0.15 to 0.16

	tchannel.TChannel.register no longer mimicks
tchannel.tornado.TChannel.register, instead it exposes the new server API
like so:

Before:

from tchannel.tornado import TChannel

tchannel = TChannel('my-service-name')

@tchannel.register('endpoint', 'json')
def endpoint(request, response, proxy):
 response.write({'resp': 'body'})

After:

from tchannel import TChannel

tchannel = TChannel('my-service-name')

@tchannel.json.register
def endpoint(request):
 return {'resp': 'body'}

 # Or, if you need to return headers with your response:
 from tchannel import Response
 return Response({'resp': 'body'}, {'header': 'foo'})

	TChannelSyncClient has been replaced with tchannel.sync.TChannel.
This new synchronous client has been significantly re-worked to more closely
match the asynchronous TChannel API. tchannel.sync.thrift.client_for
has been removed and tchannel.thrift_request_builder should be used
instead (tchannel.thrift.client_for still exists for backwards
compatibility but is not recommended). This new API allows specifying
headers, timeouts, and retry behavior with Thrift requests.

Before:

from tchannel.sync import TChannelSyncClient
from tchannel.sync.thrift import client_for

from generated.thrift.code import MyThriftService

tchannel_thrift_client = client_for('foo', MyThriftService)

tchannel = TChannelSyncClient(name='bar')

future = tchannel_thrift_client.someMethod(...)

result = future.result()

After:

from tchannel import thrift_request_builder
from tchannel.sync import TChannel
from tchannel.retry import CONNECTION_ERROR_AND_TIMEOUT

from generated.thrift.code import MyThriftService

tchannel_thrift_client = thrift_request_builder(
 service='foo',
 thrift_module=MyThriftService,
)

tchannel = TChannel(name='bar')

future = tchannel.thrift(
 tchannel_thrift_client.someMethod(...)
 headers={'foo': 'bar'},
 retry_on=CONNECTION_ERROR_AND_TIMEOUT,
 timeout=1000,
)

result = future.result()

	from tchannel.tornado import TChannel is deprecated.

	Removed retry_delay option from
tchannel.tornado.peer.PeerClientOperation.send method.

Before: tchannel.tornado.TChannel.request.send(retry_delay=300)

After: no more retry_delay in tchannel.tornado.TChannel.request.send()

	If you were catching ProtocolError you will need to catch a more specific
type, such as TimeoutError, BadRequestError, NetworkError,
UnhealthyError, or UnexpectedError.

	If you were catching AdvertiseError, it has been replaced by
TimeoutError.

	If you were catching BadRequest, it may have been masking checksum errors
and fatal streaming errors. These are now raised as FatalProtocolError,
but in practice should not need to be handled when interacting with a
well-behaved TChannel implementation.

	TChannelApplicationError was unused and removed.

	Three error types have been introduced to simplify retry handling:

	NotRetryableError (for requests should never be retried),

	RetryableError (for requests that are always safe to retry), and

	MaybeRetryableError (for requests that are safe to retry on idempotent
endpoints).

From 0.14 to 0.15

	No breaking changes.

From 0.13 to 0.14

	No breaking changes.

From 0.12 to 0.13

	No breaking changes.

From 0.11 to 0.12

	Removed print_arg. Use request.get_body() instead.

From 0.10 to 0.11

	Renamed tchannel.tornado.TChannel.advertise argument router to routers.
Since this is a required arg and the first positional arg, only clients who are
using as kwarg will break.

Before: tchannel.advertise(router=['localhost:21300'])

After: tchannel.advertise(routers=['localhost:21300'])

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 modules |

 	TChannel for Python documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tchannel	

 	
 	
 tchannel.errors	

 	
 	
 tchannel.retry	

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 modules |

 	TChannel for Python documentation

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	__call__() (tchannel.schemes.JsonArgScheme method)

 	

 	(tchannel.schemes.RawArgScheme method)

 	(tchannel.schemes.ThriftArgScheme method)

 	

 	__init__() (tchannel.TChannel method)

A

 	

 	advertise() (tchannel.sync.TChannel method)

 	

 	(tchannel.TChannel method)

 	

 	AlreadyListeningError

B

 	

 	BAD_REQUEST (in module tchannel.errors)

 	

 	BUSY (in module tchannel.errors)

C

 	

 	call() (tchannel.sync.TChannel method)

 	

 	(tchannel.TChannel method)

 	CANCELED (in module tchannel.errors)

 	

 	CONNECTION_ERROR (in module tchannel.retry)

 	CONNECTION_ERROR_AND_TIMEOUT (in module tchannel.retry)

D

 	

 	DEFAULT_RETRY_LIMIT (in module tchannel.retry)

F

 	

 	FATAL (in module tchannel.errors)

 	

 	from_code() (tchannel.errors.TChannelError class method)

G

 	

 	get_instance() (tchannel.singleton.TChannel class method)

 	

 	(tchannel.sync.singleton.TChannel class method)

I

 	

 	InvalidChecksumError

J

 	

 	JsonArgScheme (class in tchannel.schemes)

L

 	

 	load() (in module tchannel.thrift)

M

 	

 	MaybeRetryableError

N

 	

 	NETWORK_ERROR (in module tchannel.errors)

 	NEVER (in module tchannel.retry)

 	

 	NoAvailablePeerError

 	NotRetryableError

O

 	

 	OneWayNotSupportedError

P

 	

 	prepare() (tchannel.singleton.TChannel class method)

 	

 	(tchannel.sync.singleton.TChannel method)

R

 	

 	RawArgScheme (class in tchannel.schemes)

 	ReadError

 	Request (class in tchannel)

 	

 	reset() (tchannel.singleton.TChannel class method)

 	

 	(tchannel.sync.singleton.TChannel method)

 	Response (class in tchannel)

 	RetryableError

S

 	

 	ServiceNameIsRequiredError

 	

 	SingletonNotPreparedError

T

 	

 	TChannel (class in tchannel)

 	

 	(class in tchannel.singleton)

 	(class in tchannel.sync)

 	(class in tchannel.sync.singleton)

 	tchannel.errors (module)

 	tchannel.retry (module)

 	tchannel_cls (tchannel.singleton.TChannel attribute)

 	

 	(tchannel.sync.singleton.TChannel attribute)

 	

 	TChannelError

 	thrift_request_builder() (in module tchannel)

 	ThriftArgScheme (class in tchannel.schemes)

 	TIMEOUT (in module tchannel.errors)

 	

 	(in module tchannel.retry)

U

 	

 	UNHEALTHY (in module tchannel.errors)

V

 	

 	ValueExpectedError

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

 _modules/tchannel/sync/singleton.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.sync.singleton

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from threading import local

from tchannel.singleton import TChannel as TChannelSingleton
from .client import TChannel as SyncTChannel

[docs]class TChannel(TChannelSingleton):

 tchannel_cls = SyncTChannel

 local = local()
 local.tchannel = None

 prepared = False
 args = None
 kwargs = None

 @classmethod
[docs] def get_instance(cls):
 """Get a configured, thread-safe, singleton TChannel instance.

 :returns: tchannel.sync.TChannel
 """
 return super(TChannel, cls).get_instance()

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/sync/client.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.sync.client

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

import logging

from threadloop import ThreadLoop

from tchannel import TChannel as AsyncTChannel

log = logging.getLogger('tchannel')

[docs]class TChannel(AsyncTChannel):
 """Make synchronous TChannel requests.

 This client does not support incoming requests -- it is a uni-directional
 client only.

 The client is implemented on top of the Tornado-based implementation and
 offloads IO to a thread running an ``IOLoop`` next to your process.

 Usage mirrors the :py:class:`TChannel` class.

 .. code-block:: python

 from tchannel.sync import TChannel

 tchannel = TChannel(name='my-synchronous-service')

 # Advertise with Hyperbahn.
 # This returns a future. You may want to block on its result,
 # particularly if you want you app to die on unsuccessful
 # advertisement.
 tchannel.advertise(routers)

 # keyvalue is the result of a call to ``tchannel.thrift.load``.
 future = tchannel.thrift(
 keyvalue.KeyValue.getItem('foo'),
 timeout=0.5, # 0.5 seconds
)

 result = future.result()

 Fanout can be accomplished by using ``as_completed`` from the
 ``concurrent.futures`` module:

 .. code-block:: python

 from concurrent.futures import as_completed

 from tchannel.sync import TChannel

 tchannel = TChannel(name='my-synchronous-service')

 futures = [
 tchannel.thrift(service.getItem(item))
 for item in ('foo', 'bar')
]

 for future in as_completed(futures):
 print future.result()

 (``concurrent.futures`` is native to Python 3; ``pip install futures`` if
 you're using Python 2.x.)

 """

 def __init__(
 self,
 name,
 hostport=None,
 process_name=None,
 known_peers=None,
 trace=False,
 threadloop=None,
):
 """Initialize a new TChannelClient.

 :param process_name:
 Name of the calling process. Used for logging purposes only.
 """
 super(TChannel, self).__init__(
 name,
 hostport=hostport,
 process_name=process_name,
 known_peers=known_peers,
 trace=trace,

)
 self._threadloop = threadloop or ThreadLoop()

 self.advertise = self._wrap(self.advertise)

 self.raw = _SyncScheme(self.raw, self._threadloop)
 self.thrift = _SyncScheme(self.thrift, self._threadloop)
 self.json = _SyncScheme(self.json, self._threadloop)

 def register(self, *args, **kwargs):
 _register(*args, **kwargs)

 def _wrap(self, f):
 assert callable(f)

 def wrapper(*a, **kw):
 return _submit(self._threadloop, f, *a, **kw)

 return wrapper

class _SyncScheme(object):
 """Wrapper for the API that in the async TChannel class."""
 def __init__(self, scheme, threadloop):
 self.scheme = scheme
 self._threadloop = threadloop

 def __call__(self, *args, **kwargs):
 return _submit(self._threadloop, self.scheme, *args, **kwargs)

 def register(self, *args, **kwargs):
 return _register(*args, **kwargs)

def _register(*args, **kwargs):
 log.info("Registration not yet supported for sync tchannel.")

 def decorator(fn):
 return fn

 return decorator

def _submit(threadloop, func, *args, **kwargs):
 if not threadloop.is_ready():
 threadloop.start()
 return threadloop.submit(func, *args, **kwargs)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/schemes/thrift.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.schemes.thrift

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from opentracing_instrumentation.interceptors import ClientInterceptors
from tornado import gen

from tchannel.tracing import (
 ClientTracer, TChannelOpenTracingClientInterceptor)
from ..event import EventType
from . import THRIFT

[docs]class ThriftArgScheme(object):
 """Handler registration and serialization for Thrift.

 Use :py:func:`tchannel.thrift.load` to parse your Thrift IDL and compile
 it into a module dynamically.

 .. code:: python

 from tchannel import thrift

 keyvalue = thrift.load('keyvalue.thrift', service='keyvalue')

 To register a Thrift handler, use the ``register()`` decorator, providing
 a reference to the compiled service as an argument. The name of the
 service method should match the name of the decorated function.

 .. code:: python

 tchannel = TChannel(...)

 @tchannel.thrift.register(keyvalue.KeyValue)
 def setValue(request):
 data[request.body.key] = request.body.value

 Use methods on the compiled service to generate requests to remote
 services and execute them via ``TChannel.thrift()``.

 .. code:: python

 response = yield tchannel.thrift(
 keyvalue.KeyValue.setValue(key='foo', value='bar')
)
 """

 NAME = THRIFT

 def __init__(self, tchannel):
 self._tchannel = tchannel
 self.tracer = ClientTracer(channel=tchannel)

 @gen.coroutine
[docs] def __call__(
 self,
 request,
 headers=None,
 timeout=None,
 retry_on=None,
 retry_limit=None,
 shard_key=None,
 trace=None,
 hostport=None,
 routing_delegate=None,
 caller_name=None,
):
 """Make a Thrift TChannel request.

 Returns a ``Response`` containing the return value of the Thrift
 call (if any). If the remote server responded with a Thrift exception,
 that exception is raised.

 :param string request:
 Request obtained by calling a method on service objects generated
 by :py:func:`tchannel.thrift.load`.
 :param dict headers:
 Dictionary of header key-value pairs.
 :param float timeout:
 How long to wait (in seconds) before raising a ``TimeoutError`` -
 this defaults to ``tchannel.glossary.DEFAULT_TIMEOUT``.
 :param string retry_on:
 What events to retry on - valid values can be found in
 ``tchannel.retry``.
 :param int retry_limit:
 How many attempts should be made (in addition to the initial
 attempt) to re-send this request when retryable error conditions
 (specified by ``retry_on``) are encountered.

 Defaults to ``tchannel.retry.DEFAULT_RETRY_LIMIT`` (4).

 Note that the maximum possible time elapsed for a request is thus
 ``(retry_limit + 1) * timeout``.
 :param string shard_key:
 Set the ``sk`` transport header for Ringpop request routing.
 :param int trace:
 Flags for tracing.
 :param string hostport:
 A 'host:port' value to use when making a request directly to a
 TChannel service, bypassing Hyperbahn. This value takes precedence
 over the ``hostport`` specified to
 :py:func:`tchannel.thrift.load`.
 :param routing_delegate:
 Name of a service to which the request router should forward the
 request instead of the service specified in the call req.
 :param caller_name:
 Name of the service making the request. Defaults to the name
 provided when the TChannel was instantiated.

 :rtype: Response
 """
 if not headers:
 headers = {}

 span, headers = self.tracer.start_span(
 service=request.service, endpoint=request.endpoint,
 headers=headers, hostport=hostport, encoding='thrift'
)

 yield self._tchannel._dep_tchannel.event_emitter.fire(
 EventType.before_serialize_request_headers,
 headers,
 request.service,
)

 # fire interceptors
 for interceptor in ClientInterceptors.get_interceptors():
 if isinstance(interceptor, TChannelOpenTracingClientInterceptor):
 interceptor.process(span=span, headers=headers,
 service=request.service, encoding='thrift')

 serializer = request.get_serializer()
 # serialize
 try:
 headers = serializer.serialize_header(headers=headers)
 except (AttributeError, TypeError):
 raise ValueError(
 'headers must be a map[string]string (a shallow dict'
 ' where keys and values are strings)'
)

 body = serializer.serialize_body(request.call_args)

 # TODO There's only one yield. Drop in favor of future+callback.
 response = yield self._tchannel.call(
 scheme=self.NAME,
 service=request.service,
 arg1=request.endpoint,
 arg2=headers,
 arg3=body,
 timeout=timeout,
 retry_on=retry_on,
 retry_limit=retry_limit,
 hostport=hostport or request.hostport,
 shard_key=shard_key,
 trace=trace,
 tracing_span=span, # span is finished in PeerClientOperation.send
 routing_delegate=routing_delegate,
 caller_name=caller_name,
)

 response.headers = serializer.deserialize_header(
 headers=response.headers
)
 body = serializer.deserialize_body(body=response.body)

 response.body = request.read_body(body)
 raise gen.Return(response)

 def register(self, thrift_module, **kwargs):
 # dat circular import
 from tchannel.thrift import rw as thriftrw

 if isinstance(thrift_module, thriftrw.Service):
 # Dirty hack to support thriftrw and old API
 return thriftrw.register(
 # TODO drop deprecated tchannel
 self._tchannel._dep_tchannel._handler,
 thrift_module,
 **kwargs
)
 else:
 return self._tchannel.register(
 scheme=self.NAME,
 endpoint=thrift_module,
 **kwargs
)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_static/down-pressed.png

_static/up.png

_modules/tchannel/schemes/json.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.schemes.json

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from opentracing_instrumentation.interceptors import ClientInterceptors
from tornado import gen

from . import JSON
from ..event import EventType
from ..serializer.json import JsonSerializer
from ..tracing import ClientTracer, TChannelOpenTracingClientInterceptor

[docs]class JsonArgScheme(object):
 """Semantic params and serialization for json."""

 NAME = JSON

 def __init__(self, tchannel):
 self._tchannel = tchannel
 self.tracer = ClientTracer(channel=tchannel)

 @gen.coroutine
[docs] def __call__(
 self,
 service,
 endpoint,
 body=None,
 headers=None,
 timeout=None,
 retry_on=None,
 retry_limit=None,
 hostport=None,
 shard_key=None,
 trace=None,
 routing_delegate=None,
 caller_name=None,
):
 """Make JSON TChannel Request.

 .. code-block: python

 from tchannel import TChannel

 tchannel = TChannel('my-service')

 resp = tchannel.json(
 service='some-other-service',
 endpoint='get-all-the-crackers',
 body={
 'some': 'dict',
 },
)

 :param string service:
 Name of the service to call.
 :param string endpoint:
 Endpoint to call on service.
 :param string body:
 A raw body to provide to the endpoint.
 :param dict headers:
 Dictionary of header key-value pairs.
 :param float timeout:
 How long to wait (in seconds) before raising a ``TimeoutError`` -
 this defaults to ``tchannel.glossary.DEFAULT_TIMEOUT``.
 :param string retry_on:
 What events to retry on - valid values can be found in
 ``tchannel.retry``.
 :param int retry_limit:
 How many attempts should be made (in addition to the initial
 attempt) to re-send this request when retryable error conditions
 (specified by ``retry_on``) are encountered.

 Defaults to ``tchannel.retry.DEFAULT_RETRY_LIMIT`` (4).

 Note that the maximum possible time elapsed for a request is thus
 ``(retry_limit + 1) * timeout``.
 :param string hostport:
 A 'host:port' value to use when making a request directly to a
 TChannel service, bypassing Hyperbahn.
 :param routing_delegate:
 Name of a service to which the request router should forward the
 request instead of the service specified in the call req.
 :param caller_name:
 Name of the service making the request. Defaults to the name
 provided when the TChannel was instantiated.

 :rtype: Response
 """

 span, headers = self.tracer.start_span(
 service=service, endpoint=endpoint, headers=headers,
 hostport=hostport, encoding='json'
)

 yield self._tchannel._dep_tchannel.event_emitter.fire(
 EventType.before_serialize_request_headers,
 headers,
 service,
)

 # fire interceptors
 for interceptor in ClientInterceptors.get_interceptors():
 if isinstance(interceptor, TChannelOpenTracingClientInterceptor):
 interceptor.process(span=span, headers=headers,
 service=service, encoding='json')

 # serialize
 serializer = JsonSerializer()
 headers = serializer.serialize_header(headers)
 body = serializer.serialize_body(body)

 response = yield self._tchannel.call(
 scheme=self.NAME,
 service=service,
 arg1=endpoint,
 arg2=headers,
 arg3=body,
 timeout=timeout,
 retry_on=retry_on,
 retry_limit=retry_limit,
 hostport=hostport,
 shard_key=shard_key,
 trace=trace,
 tracing_span=span, # span is finished in PeerClientOperation.send
 routing_delegate=routing_delegate,
 caller_name=caller_name,
)

 # deserialize
 response.headers = serializer.deserialize_header(response.headers)
 response.body = serializer.deserialize_body(response.body)

 raise gen.Return(response)

 def register(self, endpoint, **kwargs):

 if callable(endpoint):
 handler = endpoint
 endpoint = None
 else:
 handler = None

 return self._tchannel.register(
 scheme=self.NAME,
 endpoint=endpoint,
 handler=handler,
 **kwargs
)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_static/minus.png

_modules/tchannel/schemes/raw.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.schemes.raw

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from tornado import gen

from ..event import EventType
from . import RAW

[docs]class RawArgScheme(object):
 """Semantic params and serialization for raw."""

 NAME = RAW

 def __init__(self, tchannel):
 self._tchannel = tchannel

 @gen.coroutine
[docs] def __call__(
 self,
 service,
 endpoint,
 body=None,
 headers=None,
 timeout=None,
 retry_on=None,
 retry_limit=None,
 hostport=None,
 shard_key=None,
 trace=None,
 routing_delegate=None,
 caller_name=None,
):
 """Make a raw TChannel request.

 The request's headers and body are treated as raw bytes and not
 serialized/deserialized.

 The request's headers and body are treated as raw bytes and not
 serialized/deserialized.

 .. code-block: python

 from tchannel import TChannel

 tchannel = TChannel('my-service')

 resp = tchannel.raw(
 service='some-other-service',
 endpoint='get-all-the-crackers',
)

 :param string service:
 Name of the service to call.
 :param string endpoint:
 Endpoint to call on service.
 :param string body:
 A raw body to provide to the endpoint.
 :param string headers:
 A raw headers block to provide to the endpoint.
 :param float timeout:
 How long to wait (in seconds) before raising a ``TimeoutError`` -
 this defaults to ``tchannel.glossary.DEFAULT_TIMEOUT``.
 :param string retry_on:
 What events to retry on - valid values can be found in
 ``tchannel.retry``.
 :param int retry_limit:
 How many attempts should be made (in addition to the initial
 attempt) to re-send this request when retryable error conditions
 (specified by ``retry_on``) are encountered.

 Defaults to ``tchannel.retry.DEFAULT_RETRY_LIMIT`` (4).

 Note that the maximum possible time elapsed for a request is thus
 ``(retry_limit + 1) * timeout``.
 :param string hostport:
 A 'host:port' value to use when making a request directly to a
 TChannel service, bypassing Hyperbahn.
 :param routing_delegate:
 Name of a service to which the request router should forward the
 request instead of the service specified in the call req.
 :param caller_name:
 Name of the service making the request. Defaults to the name
 provided when the TChannel was instantiated.

 :rtype: Response
 """
 yield self._tchannel._dep_tchannel.event_emitter.fire(
 EventType.before_serialize_request_headers,
 headers,
 service,
)

 response = yield self._tchannel.call(
 scheme=self.NAME,
 service=service,
 arg1=endpoint,
 arg2=headers,
 arg3=body,
 timeout=timeout,
 retry_on=retry_on,
 retry_limit=retry_limit,
 hostport=hostport,
 shard_key=shard_key,
 trace=trace,
 routing_delegate=routing_delegate,
 caller_name=caller_name,
)

 raise gen.Return(response)

 def register(self, endpoint, **kwargs):

 # no args, eg - server.raw.register
 if callable(endpoint):
 handler = endpoint
 endpoint = None

 # args, eg - server.raw.register('bar')
 else:
 handler = None

 return self._tchannel.register(
 scheme=self.NAME,
 endpoint=endpoint,
 handler=handler,
 **kwargs
)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/errors.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.errors

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

#: The request timed out.
TIMEOUT = 0x01

#: The request was canceled.
CANCELED = 0x02

#: The server was busy.
BUSY = 0x03

The server declined the request.
DECLINED = 0x04

The server's handler raised an unexpected exception.
UNEXPECTED_ERROR = 0x05

#: The request was bad.
BAD_REQUEST = 0x06

#: There was a network error when sending the request.
NETWORK_ERROR = 0x07

#: The server handling the request is unhealthy.
UNHEALTHY = 0x08

#: There was a fatal protocol-level error.
FATAL = 0xFF

[docs]class TChannelError(Exception):
 """A TChannel-generated exception.

 :ivar code:
 The error code for this error. See the `Specification`_ for a
 description of these codes.
 :vartype code:

 .. _`Specification`:
 http://tchannel.readthedocs.org/en/latest/protocol/#code1_1
 """

 __slots__ = (
 'code',
 'description',
 'id',
 'tracing',
)

 code = None

 def __init__(
 self,
 description=None,
 id=None,
 tracing=None,
):
 super(TChannelError, self).__init__(description)
 self.tracing = tracing
 self.id = id
 self.description = description

 @classmethod
[docs] def from_code(cls, code, **kw):
 """Construct a ``TChannelError`` instance from an error code.

 This will return the appropriate class type for the given code.
 """
 return {
 TIMEOUT: TimeoutError,
 CANCELED: CanceledError,
 BUSY: BusyError,
 DECLINED: DeclinedError,
 UNEXPECTED_ERROR: UnexpectedError,
 BAD_REQUEST: BadRequestError,
 NETWORK_ERROR: NetworkError,
 UNHEALTHY: UnhealthyError,
 FATAL: FatalProtocolError,
 }[code](**kw)

[docs]class RetryableError(TChannelError):
 """An error where the original request is always safe to retry.

 It is always safe to retry a request with this category of errors. The
 original request was never handled.
 """

[docs]class MaybeRetryableError(TChannelError):
 """An error where the original request may be safe to retry.

 The original request may have reached the intended service. Hence, the
 request should only be retried if it is known to be `idempotent`_.

 .. _`idempotent`:
 https://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
 """

[docs]class NotRetryableError(TChannelError):
 """An error where the original request should not be re-sent.

 Something was fundamentally wrong with the request and it should not be
 retried.
 """

class TimeoutError(MaybeRetryableError):
 code = TIMEOUT

class CanceledError(NotRetryableError):
 code = CANCELED

class BusyError(RetryableError):
 code = BUSY

class DeclinedError(RetryableError):
 code = DECLINED

class UnexpectedError(MaybeRetryableError):
 code = UNEXPECTED_ERROR

class BadRequestError(NotRetryableError):
 code = BAD_REQUEST

class NetworkError(MaybeRetryableError):
 code = NETWORK_ERROR

class UnhealthyError(NotRetryableError):
 code = UNHEALTHY

class FatalProtocolError(NotRetryableError):
 code = FATAL

[docs]class ReadError(FatalProtocolError):
 """Raised when there is an error while reading input."""
 pass

[docs]class InvalidChecksumError(FatalProtocolError):
 """Represent invalid checksum type in the message"""
 pass

[docs]class NoAvailablePeerError(RetryableError):
 """Represents a failure to find any peers for a request."""
 pass

[docs]class AlreadyListeningError(FatalProtocolError):
 """Raised when attempting to listen multiple times."""
 pass

[docs]class OneWayNotSupportedError(BadRequestError):
 """Raised when a one-way Thrift procedure is called."""
 pass

[docs]class ValueExpectedError(BadRequestError):
 """Raised when a non-void Thrift response contains no value."""
 pass

[docs]class SingletonNotPreparedError(TChannelError):
 """Raised when calling get_instance before calling prepare."""
 pass

[docs]class ServiceNameIsRequiredError(Exception):
 """Raised when service name is empty or None."""

 def __init__(self):
 super(ServiceNameIsRequiredError, self).__init__(
 "service name cannot be empty or None"
)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/singleton.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.singleton

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from threading import local

from . import TChannel as AsyncTChannel
from .errors import SingletonNotPreparedError

[docs]class TChannel(object):
 """Maintain a single TChannel instance per-thread."""

 tchannel_cls = AsyncTChannel

 local = local()
 local.tchannel = None

 prepared = False
 args = None
 kwargs = None

 @classmethod
[docs] def prepare(cls, *args, **kwargs):
 """Set arguments to be used when instantiating a TChannel instance.

 Arguments are the same as :py:meth:`tchannel.TChannel.__init__`.
 """
 cls.args = args
 cls.kwargs = kwargs
 cls.prepared = True

 @classmethod
[docs] def reset(cls, *args, **kwargs):
 """Undo call to prepare, useful for testing."""
 cls.local.tchannel = None
 cls.args = None
 cls.kwargs = None
 cls.prepared = False

 @classmethod
[docs] def get_instance(cls):
 """Get a configured, thread-safe, singleton TChannel instance.

 :returns tchannel.TChannel:
 """
 if not cls.prepared:
 raise SingletonNotPreparedError(
 "prepare must be called before get_instance"
)

 if hasattr(cls.local, 'tchannel') and cls.local.tchannel is not None:
 return cls.local.tchannel

 cls.local.tchannel = cls.tchannel_cls(*cls.args, **cls.kwargs)

 return cls.local.tchannel

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 All modules for which code is available

		tchannel.errors

		tchannel.request

		tchannel.response

		tchannel.schemes.json

		tchannel.schemes.raw

		tchannel.schemes.thrift

		tchannel.singleton

		tchannel.sync.client

		tchannel.sync.singleton

		tchannel.tchannel

		tchannel.thrift.module

		tchannel.thrift.rw

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/tchannel.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.tchannel

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

import json
import logging

from threading import Lock

from tornado import gen

from . import schemes
from . import transport
from . import retry
from . import tracing
from .errors import AlreadyListeningError, ServiceNameIsRequiredError
from .glossary import DEFAULT_TIMEOUT
from .health import health
from .health import Meta
from .response import Response, TransportHeaders
from .tornado import TChannel as DeprecatedTChannel
from .tornado.dispatch import RequestDispatcher as DeprecatedDispatcher
from .tracing import TracingContextProvider

log = logging.getLogger('tchannel')

__all__ = ['TChannel']

[docs]class TChannel(object):
 """Manages connections and requests to other TChannel services.

 Usage for a JSON client/server:

 .. code:: python

 tchannel = TChannel(name='foo')

 @tchannel.json.register
 def handler(request):
 return {'foo': 'bar'}

 response = yield tchannel.json(
 service='some-service',
 endpoint='endpoint',
 headers={'req': 'headers'},
 body={'req': 'body'},
)

 :cvar thrift:
 Make Thrift requests over TChannel and register Thrift handlers.
 :vartype thrift: ThriftArgScheme

 :cvar json:
 Make JSON requests over TChannel and register JSON handlers.
 :vartype json: JsonArgScheme

 :cvar raw:
 Make requests and register handles that pass raw bytes.
 :vartype raw: RawArgScheme

 """

 FALLBACK = DeprecatedTChannel.FALLBACK

[docs] def __init__(self, name, hostport=None, process_name=None,
 known_peers=None, trace=True, reuse_port=False,
 context_provider=None, tracer=None):
 """
 Note: In general only one ``TChannel`` instance should be used at a
 time. Multiple ``TChannel`` instances are not advisable and could
 result in undefined behavior.

 :param string name:
 How this application identifies itself. This is the name callers
 will use to make contact, it is also what your downstream services
 will see in their metrics.

 :param string hostport:
 An optional host/port to serve on, e.g., ``"127.0.0.1:5555``. If
 not provided an ephemeral port will be used. When advertising on
 Hyperbahn you callers do not need to know your port.
 """
 if not name:
 raise ServiceNameIsRequiredError
 self.context_provider = context_provider or TracingContextProvider()

 # until we move everything here,
 # lets compose the old tchannel
 self._dep_tchannel = DeprecatedTChannel(
 name=name,
 hostport=hostport,
 process_name=process_name,
 known_peers=known_peers,
 trace=trace,
 tracer=tracer,
 dispatcher=DeprecatedDispatcher(_handler_returns_response=True),
 reuse_port=reuse_port,
 _from_new_api=True,
 context_provider_fn=lambda: self.context_provider,
)

 self.name = name

 # set arg schemes
 self.raw = schemes.RawArgScheme(self)
 self.json = schemes.JsonArgScheme(self)
 self.thrift = schemes.ThriftArgScheme(self)
 self._listen_lock = Lock()
 # register default health endpoint
 self.thrift.register(Meta)(health)

 # advertise_response is the Future containing the response of calling
 # advertise().
 self._advertise_response = None
 self._advertise_lock = Lock()
 tracing.api_check(tracer=tracer)

 def is_listening(self):
 return self._dep_tchannel.is_listening()

 @property
 def hooks(self):
 return self._dep_tchannel.hooks

 @property
 def tracer(self):
 return self._dep_tchannel.tracer

 @gen.coroutine
[docs] def call(
 self,
 scheme,
 service,
 arg1,
 arg2=None,
 arg3=None,
 timeout=None,
 retry_on=None,
 retry_limit=None,
 routing_delegate=None,
 hostport=None,
 shard_key=None,
 tracing_span=None,
 trace=None, # to trace or not, defaults to self._dep_tchannel.trace
 caller_name=None,
):
 """Make low-level requests to TChannel services.

 Note: Usually you would interact with a higher-level arg scheme
 like :py:class:`tchannel.schemes.JsonArgScheme` or
 :py:class:`tchannel.schemes.ThriftArgScheme`.
 """

 # TODO - don't use asserts for public API
 assert format, "format is required"
 assert service, "service is required"
 assert arg1, "arg1 is required"

 # default args
 if arg2 is None:
 arg2 = ""
 if arg3 is None:
 arg3 = ""
 if timeout is None:
 timeout = DEFAULT_TIMEOUT
 if retry_on is None:
 retry_on = retry.DEFAULT
 if retry_limit is None:
 retry_limit = retry.DEFAULT_RETRY_LIMIT

 # TODO - allow filters/steps for serialization, tracing, etc...

 tracing.apply_trace_flag(tracing_span, trace, self._dep_tchannel.trace)

 # calls tchannel.tornado.peer.PeerClientOperation.__init__
 operation = self._dep_tchannel.request(
 service=service,
 hostport=hostport,
 arg_scheme=scheme,
 retry=retry_on,
 tracing_span=tracing_span
)

 # fire operation
 transport_headers = {
 transport.SCHEME: scheme,
 transport.CALLER_NAME: caller_name or self.name,
 }
 if shard_key:
 transport_headers[transport.SHARD_KEY] = shard_key
 if routing_delegate:
 transport_headers[transport.ROUTING_DELEGATE] = routing_delegate

 response = yield operation.send(
 arg1=arg1,
 arg2=arg2,
 arg3=arg3,
 headers=transport_headers,
 retry_limit=retry_limit,
 ttl=timeout,
)

 # unwrap response
 body = yield response.get_body()
 headers = yield response.get_header()
 t = TransportHeaders.from_dict(response.headers)
 result = Response(
 body=body,
 headers=headers,
 transport=t,
 status=response.code,
)

 raise gen.Return(result)

 def listen(self, port=None):
 with self._listen_lock:
 if self._dep_tchannel.is_listening():
 listening_port = int(self.hostport.rsplit(":")[1])
 if port and port != listening_port:
 raise AlreadyListeningError(
 "TChannel server is already listening on port: %d"
 % listening_port
)
 else:
 return
 return self._dep_tchannel.listen(port)

 @property
 def host(self):
 return self._dep_tchannel.host

 @property
 def hostport(self):
 return self._dep_tchannel.hostport

 @property
 def port(self):
 return self._dep_tchannel.port

 def is_closed(self):
 return self._dep_tchannel.closed

 def close(self):
 return self._dep_tchannel.close()

 def register(self, scheme, endpoint=None, handler=None, **kwargs):
 if scheme is self.FALLBACK:
 # scheme is not required for fallback endpoints
 endpoint = scheme
 scheme = None

 def decorator(fn):

 # assert handler is None, "can't handler when using as decorator"

 if endpoint is None:
 e = fn.__name__
 else:
 e = endpoint

 return self._dep_tchannel.register(
 endpoint=e,
 scheme=scheme,
 handler=fn,
 **kwargs
)

 if handler is None:
 return decorator
 else:
 return decorator(handler)

[docs] def advertise(self, routers=None, name=None, timeout=None,
 router_file=None, jitter=None):
 """Advertise with Hyperbahn.

 After a successful advertisement, Hyperbahn will establish long-lived
 connections with your application. These connections are used to load
 balance inbound and outbound requests to other applications on the
 Hyperbahn network.

 Re-advertisement happens periodically after calling this method (every
 minute). Hyperbahn will eject us from the network if it doesn't get a
 re-advertise from us after 5 minutes.

 This function may be called multiple times if it fails. If it
 succeeds, all consecutive calls are ignored.

 :param list routers:
 A seed list of known Hyperbahn addresses to attempt contact with.
 Entries should be of the form ``"host:port"``.

 :param string name:
 The name your application identifies itself as. This is usually
 unneeded because in the common case it will match the ``name`` you
 initialized the ``TChannel`` instance with. This is the identifier
 other services will use to make contact with you.

 :param timeout:
 The timeout (in sec) for the initial advertise attempt.
 Defaults to 30 seconds.

 :param jitter:
 Variance allowed in the interval per request. Defaults to 5
 seconds. The jitter applies to the initial advertise request as
 well.

 :param router_file:
 The host file that contains the routers information. The file
 should contain a JSON stringified format of the routers parameter.
 Either routers or router_file should be provided. If both provided,
 a ValueError will be raised.

 :returns:
 A future that resolves to the remote server's response after the
 first advertise finishes.

 :raises TimeoutError:
 When unable to make our first advertise request to Hyperbahn.
 Subsequent requests may fail but will be ignored.
 """
 if routers is not None and router_file is not None:
 raise ValueError(
 'Only one of routers and router_file can be provided.')

 if routers is None and router_file is not None:
 # should just let the exceptions fly
 try:
 with open(router_file, 'r') as json_data:
 routers = json.load(json_data)
 except (IOError, OSError, ValueError):
 log.exception('Failed to read seed routers list.')
 raise

 @gen.coroutine
 def _advertise():
 result = yield self._dep_tchannel.advertise(
 routers=routers,
 name=name,
 timeout=timeout,
)
 body = yield result.get_body()
 headers = yield result.get_header()
 response = Response(json.loads(body), headers or {})
 raise gen.Return(response)

 def _on_advertise(future):
 if not future.exception():
 return

 # If the request failed, clear the response so that we can try
 # again.
 with self._advertise_lock:
 # `is` comparison to ensure we're not deleting another Future.
 if self._advertise_response is future:
 self._advertise_response = None

 with self._advertise_lock:
 if self._advertise_response is not None:
 return self._advertise_response
 future = self._advertise_response = _advertise()

 # We call add_done_callback here rather than when we call _advertise()
 # because if the future has already resolved by the time we call
 # add_done_callback, the callback will immediately be executed. The
 # callback will try to acquire the advertise_lock which we already
 # hold and end up in a deadlock.
 future.add_done_callback(_on_advertise)
 return future

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/thrift/rw.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.thrift.rw

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import, print_function, unicode_literals

import sys
import types
from functools import partial

import thriftrw
from tornado import gen
from tornado.util import raise_exc_info

from tchannel.status import OK, FAILED
from tchannel.errors import OneWayNotSupportedError
from tchannel.errors import ValueExpectedError
from tchannel.response import Response, response_from_mixed
from tchannel.serializer.thrift import ThriftRWSerializer

from .module import ThriftRequest

[docs]def load(path, service=None, hostport=None, module_name=None):
 """Loads the Thrift file at the specified path.

 The file is compiled in-memory and a Python module containing the result
 is returned. It may be used with ``TChannel.thrift``. For example,

 .. code-block:: python

 from tchannel import TChannel, thrift

 # Load our server's interface definition.
 donuts = thrift.load(path='donuts.thrift')

 # We need to specify a service name or hostport because this is a
 # downstream service we'll be calling.
 coffee = thrift.load(path='coffee.thrift', service='coffee')

 tchannel = TChannel('donuts')

 @tchannel.thrift.register(donuts.DonutsService)
 @tornado.gen.coroutine
 def submitOrder(request):
 args = request.body

 if args.coffee:
 yield tchannel.thrift(
 coffee.CoffeeService.order(args.coffee)
)

 # ...

 The returned module contains, one top-level type for each struct, enum,
 union, exeption, and service defined in the Thrift file. For each service,
 the corresponding class contains a classmethod for each function defined
 in that service that accepts the arguments for that function and returns a
 ``ThriftRequest`` capable of being sent via ``TChannel.thrift``.

 For more information on what gets generated by ``load``, see `thriftrw
 <http://thriftrw.readthedocs.org/en/latest/>`_.

 Note that the ``path`` accepted by ``load`` must be either an absolute
 path or a path relative to the *the current directory*. If you need to
 refer to Thrift files relative to the Python module in which ``load`` was
 called, use the ``__file__`` magic variable.

 .. code-block:: python

 # Given,
 #
 # foo/
 # myservice.thrift
 # bar/
 # x.py
 #
 # Inside foo/bar/x.py,

 path = os.path.join(
 os.path.dirname(__file__), '../myservice.thrift'
)

 The returned value is a valid Python module. You can install the module by
 adding it to the ``sys.modules`` dictionary. This will allow importing
 items from this module directly. You can use the ``__name__`` magic
 variable to make the generated module a submodule of the current module.
 For example,

 .. code-block:: python

 # foo/bar.py

 import sys
 from tchannel import thrift

 donuts = = thrift.load('donuts.thrift')
 sys.modules[__name__ + '.donuts'] = donuts

 This installs the module generated for ``donuts.thrift`` as the module
 ``foo.bar.donuts``. Callers can then import items from that module
 directly. For example,

 .. code-block:: python

 # foo/baz.py

 from foo.bar.donuts import DonutsService, Order

 def baz(tchannel):
 return tchannel.thrift(
 DonutsService.submitOrder(Order(..))
)

 :param str service:
 Name of the service that the Thrift file represents. This name will be
 used to route requests through Hyperbahn.
 :param str path:
 Path to the Thrift file. If this is a relative path, it must be
 relative to the current directory.
 :param str hostport:
 Clients can use this to specify the hostport at which the service can
 be found. If omitted, TChannel will route the requests through known
 peers. This value is ignored by servers.
 :param str module_name:
 Name used for the generated Python module. Defaults to the name of the
 Thrift file.
 """
 # TODO replace with more specific exceptions
 # assert service, 'service is required'
 # assert path, 'path is required'

 # Backwards compatibility for callers passing in service name as first arg.
 if not path.endswith('.thrift'):
 service, path = path, service

 module = thriftrw.load(path=path, name=module_name)
 return TChannelThriftModule(service, module, hostport)

class TChannelThriftModule(types.ModuleType):
 """Wraps the ``thriftrw``-generated module.

 Wraps service classes with ``Service`` and exposes everything else from
 the module as-is.
 """

 def __init__(self, service, module, hostport=None):
 """Initialize a TChannelThriftModule.

 :param str service:
 Name of the service this module represents. This name will be used
 for routing over Hyperbahn.
 :param module:
 Module generated by ``thriftrw`` for a Thrift file.
 :param str hostport:
 This may be specified if the caller is a client and wants all
 requests sent to a specific address.
 """

 self.service = service
 self.hostport = hostport

 self._module = module

 services = getattr(self._module, '__services__', None)
 if services is None:
 # thriftrw <1.0
 services = getattr(self._module, 'services')

 for service_cls in services:
 name = service_cls.service_spec.name
 setattr(self, name, Service(service_cls, self))

 def __getattr__(self, name):
 return getattr(self._module, name)

 def __str__(self):
 return 'TChannelThriftModule(%s, %s)' % (self.service, self._module)

 __repr__ = __str__

class Service(object):
 """Wraps service classes generated by thriftrw.

 Exposes all functions of the service.
 """

 def __init__(self, cls, module):
 self._module = module
 self._cls = cls
 self._spec = cls.service_spec

 self._setup_functions(self._spec)

 def _setup_functions(self, spec):
 if spec.parent:
 # Set up inherited functions first.
 self._setup_functions(spec.parent)

 for func_spec in spec.functions:
 setattr(self, func_spec.name, Function(func_spec, self))

 @property
 def name(self):
 """Name of the Thrift service this object represents."""
 return self._spec.name

 def __str__(self):
 return 'Service(%s)' % self.name

 __repr__ = __str__

class Function(object):
 """Wraps a ServiceFunction generated by thriftrw.

 Acts as a callable that will construct ThriftRequests.
 """

 __slots__ = (
 'spec', 'service', '_func', '_request_cls', '_response_cls'
)

 def __init__(self, func_spec, service):
 self.spec = func_spec
 self.service = service

 self._func = func_spec.surface
 self._request_cls = self._func.request
 self._response_cls = self._func.response

 @property
 def endpoint(self):
 """Endpoint name for this function."""
 return '%s::%s' % (self.service.name, self._func.name)

 @property
 def oneway(self):
 """Whether this function is oneway."""
 return self.spec.oneway

 def __call__(self, *args, **kwargs):
 if self.oneway:
 raise OneWayNotSupportedError(
 'TChannel+Thrift does not currently support oneway '
 'procedures.'
)

 if not (
 self.service._module.hostport or
 self.service._module.service
):
 raise ValueError(
 "No 'service' or 'hostport' provided to " +
 str(self)
)

 module = self.service._module
 call_args = self._request_cls(*args, **kwargs)

 return ThriftRWRequest(
 module=module,
 service=module.service,
 endpoint=self.endpoint,
 result_type=self._response_cls,
 call_args=call_args,
 hostport=module.hostport,
)

 def __str__(self):
 return 'Function(%s)' % self.endpoint

 __repr__ = __str__

def register(dispatcher, service, handler=None, method=None):
 """
 :param dispatcher:
 RequestDispatcher against which the new endpoint will be registered.
 :param Service service:
 Service object representing the service whose endpoint is being
 registered.
 :param handler:
 A function implementing the given Thrift function.
 :param method:
 If specified, name of the method being registered. Defaults to the
 name of the ``handler`` function.
 """

 def decorator(method, handler):
 if not method:
 method = handler.__name__

 function = getattr(service, method, None)
 assert function, (
 'Service "%s" does not define method "%s"' % (service.name, method)
)
 assert not function.oneway

 dispatcher.register(
 function.endpoint,
 build_handler(function, handler),
 ThriftRWSerializer(service._module, function._request_cls),
 ThriftRWSerializer(service._module, function._response_cls),
)
 return handler

 if handler is None:
 return partial(decorator, method)
 else:
 return decorator(method, handler)

def build_handler(function, handler):
 # response_cls is a class that represents the response union for this
 # function. It accepts one parameter for each exception defined on the
 # method and another parameter 'success' for the result of the call. The
 # success kwarg is absent if the function doesn't return anything.
 response_cls = function._response_cls
 response_spec = response_cls.type_spec

 @gen.coroutine
 def handle(request):
 # kwargs for this function's response_cls constructor
 response_kwargs = {}
 status = OK

 try:
 response = yield gen.maybe_future(handler(request))
 except Exception as e:
 response = Response()

 for exc_spec in response_spec.exception_specs:
 # Each exc_spec is a thriftrw.spec.FieldSpec. The spec
 # attribute on that is the TypeSpec for the Exception class
 # and the surface on the TypeSpec is the exception class.
 exc_cls = exc_spec.spec.surface
 if isinstance(e, exc_cls):
 status = FAILED
 response_kwargs[exc_spec.name] = e
 break
 else:
 raise_exc_info(sys.exc_info())
 else:
 response = response_from_mixed(response)

 if response_spec.return_spec is not None:
 assert response.body is not None, (
 'Expected a value to be returned for %s, '
 'but recieved None - only void procedures can '
 'return None.' % function.endpoint
)
 response_kwargs['success'] = response.body

 response.status = status
 response.body = response_cls(**response_kwargs)
 raise gen.Return(response)

 handle.__name__ = function.spec.name

 return handle

class ThriftRWRequest(ThriftRequest):

 def __init__(self, module, **kwargs):
 kwargs['serializer'] = ThriftRWSerializer(
 module, kwargs['result_type']
)
 super(ThriftRWRequest, self).__init__(**kwargs)

 def read_body(self, body):
 response_spec = self.result_type.type_spec

 for exc_spec in response_spec.exception_specs:
 exc = getattr(body, exc_spec.name)
 if exc is not None:
 raise exc

 # success - non-void
 if response_spec.return_spec is not None:
 if body.success is None:
 raise ValueExpectedError(
 'Expected a value to be returned for %s, '
 'but recieved None - only void procedures can '
 'return None.' % self.endpoint
)

 return body.success

 # success - void
 else:
 return None

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/request.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.request

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from . import schemes
from . import transport as t

__all__ = ['Request']

[docs]class Request(object):
 """A TChannel request.

 This is sent by callers and received by registered handlers.

 :ivar body:
 The payload of this request. The type of this attribute depends on the
 scheme being used (e.g., JSON, Thrift, etc.).

 :ivar headers:
 A dictionary of application headers. This should be a mapping of
 strings to strings.

 :ivar transport:
 Protocol-level transport headers. These are used for routing over
 Hyperbahn.

 The most useful piece of information here is probably
 ``request.transport.caller_name``, which is the identity of the
 application that created this request.

 :ivar service:
 Name of the service being called. Inside request handlers, this is
 usually the name of "this" service itself. However, for services that
 simply forward requests to other services, this is the name of the
 target service.

 :ivar timeout:
 Amount of time (in seconds) within which this request is expected to
 finish.
 """

 # TODO move over other props from tchannel.tornado.request

 __slots__ = (
 'body',
 'headers',
 'service',
 'transport',
 'endpoint',
 'timeout',
)

 def __init__(
 self,
 body=None,
 headers=None,
 transport=None,
 endpoint=None,
 service=None,
 timeout=None,
):
 self.body = body
 self.headers = headers
 self.transport = transport
 self.endpoint = endpoint
 self.service = service
 self.timeout = timeout

class TransportHeaders(object):
 """Request Transport Headers"""

 # TODO implement __repr__
 # TODO retry_flags should be woke up past a string

 __slots__ = (
 'caller_name',
 'claim_at_start',
 'claim_at_finish',
 'failure_domain',
 'retry_flags',
 'routing_delegate',
 'scheme',
 'speculative_exe',
 'shard_key',
)

 def __init__(self,
 caller_name=None,
 claim_at_start=None,
 claim_at_finish=None,
 failure_domain=None,
 retry_flags=None,
 scheme=None,
 speculative_exe=None,
 shard_key=None,
 routing_delegate=None):

 if scheme is None:
 scheme = schemes.RAW

 self.caller_name = caller_name
 self.claim_at_start = claim_at_start
 self.claim_at_finish = claim_at_finish
 self.failure_domain = failure_domain
 self.retry_flags = retry_flags
 self.routing_delegate = routing_delegate
 self.scheme = scheme
 self.speculative_exe = speculative_exe
 self.shard_key = shard_key

 @classmethod
 def from_dict(cls, data):
 return cls(
 caller_name=data.get(t.CALLER_NAME),
 claim_at_finish=data.get(t.CLAIM_AT_FINISH),
 claim_at_start=data.get(t.CLAIM_AT_START),
 failure_domain=data.get(t.FAILURE_DOMAIN),
 retry_flags=data.get(t.RETRY_FLAGS),
 routing_delegate=data.get(t.ROUTING_DELEGATE),
 scheme=data.get(t.SCHEME),
 shard_key=data.get(t.SHARD_KEY),
 speculative_exe=data.get(t.SPECULATIVE_EXE),
)

 def to_dict(self):
 m = {}

 if self.caller_name is not None:
 m[t.CALLER_NAME] = self.caller_name

 if self.claim_at_start is not None:
 m[t.CLAIM_AT_START] = self.claim_at_start

 if self.claim_at_finish is not None:
 m[t.CLAIM_AT_FINISH] = self.claim_at_finish

 if self.failure_domain is not None:
 m[t.FAILURE_DOMAIN] = self.failure_domain

 if self.retry_flags is not None:
 m[t.RETRY_FLAGS] = self.retry_flags

 if self.routing_delegate is not None:
 m[t.ROUTING_DELEGATE] = self.routing_delegate

 if self.scheme is not None:
 m[t.SCHEME] = self.scheme

 if self.shard_key is not None:
 m[t.SHARD_KEY] = self.shard_key

 if self.speculative_exe is not None:
 m[t.SPECULATIVE_EXE] = self.speculative_exe

 return m

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/response.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.response

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from . import schemes
from . import transport as t
from .status import OK

__all__ = ['Response']

[docs]class Response(object):
 """A TChannel response.

 This is sent by handlers and received by callers.

 :ivar body:
 The payload of this response. The type of this attribute depends on the
 scheme being used (e.g., JSON, Thrift, etc.).

 :ivar headers:
 A dictionary of application headers. This should be a mapping of
 strings to strings.

 :ivar transport:
 Protocol-level transport headers. These are used for routing over
 Hyperbahn.
 """

 # TODO implement __repr__

 __slots__ = (
 'body',
 'status',
 'headers',
 'transport',
)

 def __init__(self, body=None, headers=None, transport=None, status=None):
 if status is None:
 status = OK
 self.body = body
 self.status = status
 self.headers = headers
 self.transport = transport

class TransportHeaders(object):
 """Response-specific Transport Headers"""

 # TODO implement __repr__

 __slots__ = (
 'failure_domain',
 'scheme',
)

 def __init__(self, failure_domain=None, scheme=None):
 if scheme is None:
 scheme = schemes.RAW

 self.failure_domain = failure_domain
 self.scheme = scheme

 @classmethod
 def from_dict(cls, data):
 return cls(
 failure_domain=data.get(t.FAILURE_DOMAIN),
 scheme=data.get(t.SCHEME),
)

 def to_dict(self):
 m = {}

 if self.failure_domain is not None:
 m[t.FAILURE_DOMAIN] = self.failure_domain

 if self.scheme is not None:
 m[t.SCHEME] = self.scheme

 return m

def response_from_mixed(mixed):
 """Create Response from mixed input."""

 # if none then give empty Response
 if mixed is None:
 return Response()

 # if not Response, then treat like body
 if not isinstance(mixed, Response):
 return Response(mixed)

 # it's already a Response
 return mixed

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

_modules/tchannel/thrift/module.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python documentation »

 		Module code »

 Source code for tchannel.thrift.module

Copyright (c) 2016 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

import inspect
import types

from tchannel.deprecate import deprecated
from tchannel.errors import ValueExpectedError
from tchannel.errors import OneWayNotSupportedError
from tchannel.serializer.thrift import ThriftSerializer

from .reflection import get_service_methods, get_module_name

@deprecated(
 "thrift_request_builder is deprecated and will be removed in 0.19.0. "
 "please switch usage to tchannel.thrift.load."
)
[docs]def thrift_request_builder(service, thrift_module, hostport=None,
 thrift_class_name=None):
 """Provide TChannel compatibility with Thrift-generated modules.

 The service this creates is meant to be used with TChannel like so:

 .. code-block:: python

 from tchannel import TChannel, thrift_request_builder
 from some_other_service_thrift import some_other_service

 tchannel = TChannel('my-service')

 some_service = thrift_request_builder(
 service='some-other-service',
 thrift_module=some_other_service
)

 resp = tchannel.thrift(
 some_service.fetchPotatoes()
)

 .. deprecated:: 0.18.0

 Please switch to :py:func:`tchannel.thrift.load`.

 .. warning::

 This API is deprecated and will be removed in a future version.

 :param string service:
 Name of Thrift service to call. This is used internally for
 grouping and stats, but also to route requests over Hyperbahn.

 :param thrift_module:
 The top-level module of the Apache Thrift generated code for
 the service that will be called.

 :param string hostport:
 When calling the Thrift service directly, and not over Hyperbahn,
 this 'host:port' value should be provided.

 :param string thrift_class_name:
 When the Apache Thrift generated Iface class name does not match
 thrift_module, then this should be provided.
 """

 # start with a request maker instance
 maker = ThriftRequestMaker(
 service=service,
 thrift_module=thrift_module,
 hostport=hostport,
 thrift_class_name=thrift_class_name
)

 # create methods that mirror thrift client
 # and each return ThriftRequest
 methods = _create_methods(thrift_module)

 # then attach to instane
 for name, method in methods.iteritems():
 method = types.MethodType(method, maker, ThriftRequestMaker)
 setattr(maker, name, method)

 return maker

class ThriftRequestMaker(object):

 def __init__(self, service, thrift_module,
 hostport=None, thrift_class_name=None):

 self.service = service
 self.thrift_module = thrift_module
 self.hostport = hostport

 if thrift_class_name is not None:
 self.thrift_class_name = thrift_class_name
 else:
 self.thrift_class_name = get_module_name(self.thrift_module)

 def _make_request(self, method_name, args, kwargs):

 result_type = self._get_result_type(method_name)

 if result_type is None:
 raise OneWayNotSupportedError(
 'TChannel+Thrift does not currently support oneway '
 'procedures.'
)

 endpoint = self._get_endpoint(method_name)
 call_args = self._get_call_args(method_name, args, kwargs)

 request = ThriftRequest(
 service=self.service,
 endpoint=endpoint,
 result_type=result_type,
 call_args=call_args,
 hostport=self.hostport
)

 return request

 def _get_endpoint(self, method_name):

 endpoint = '%s::%s' % (self.thrift_class_name, method_name)

 return endpoint

 def _get_args_type(self, method_name):

 args_type = getattr(self.thrift_module, method_name + '_args')

 return args_type

 def _get_result_type(self, method_name):

 # if None then result_type is oneway
 result_type = getattr(
 self.thrift_module, method_name + '_result', None
)

 return result_type

 def _get_call_args(self, method_name, args, kwargs):

 args_type = self._get_args_type(method_name)

 params = inspect.getcallargs(
 getattr(self.thrift_module.Iface, method_name),
 self,
 *args,
 **kwargs
)
 params.pop('self') # self is already known

 call_args = args_type()
 for name, value in params.items():
 setattr(call_args, name, value)

 return call_args

class ThriftRequest(object):

 __slots__ = (
 'service', 'endpoint', 'result_type', 'call_args', 'hostport',
 '_serializer',
)

 # TODO - implement __repr__

 def __init__(self, service, endpoint, result_type,
 call_args, hostport=None, serializer=None):

 self.service = service
 self.endpoint = endpoint
 self.result_type = result_type
 self.call_args = call_args
 self.hostport = hostport

 if not serializer:
 serializer = ThriftSerializer(self.result_type)
 self._serializer = serializer

 def get_serializer(self):
 return self._serializer

 def read_body(self, body):
 """Handles the response body for this request.

 If the response body includes a result, returns the result unwrapped
 from the response union. If the response contains an exception, raises
 that exception.
 """
 result_spec = self.result_type.thrift_spec

 # raise application exception, if present
 for exc_spec in result_spec[1:]:
 exc = getattr(body, exc_spec[2])
 if exc is not None:
 raise exc

 # success - non-void
 if len(result_spec) >= 1 and result_spec[0] is not None:

 # value expected, but got none
 # TODO - server side should use this same logic
 if body.success is None:
 raise ValueExpectedError(
 'Expected a value to be returned for %s, '
 'but recieved None - only void procedures can '
 'return None.' % self.endpoint
)

 return body.success

 # success - void
 else:
 return None

def _create_methods(thrift_module):

 # TODO - this method isn't needed, instead, do:
 #
 # for name in get_service_methods(...):
 # method = _create_method(...)
 # # ...
 #

 methods = {}
 method_names = get_service_methods(thrift_module.Iface)

 for method_name in method_names:

 method = _create_method(method_name)
 methods[method_name] = method

 return methods

def _create_method(method_name):

 # TODO - copy over entire signature using @functools.wraps(that_function)
 # or wrapt on Iface.<method>

 def method(self, *args, **kwargs):
 # TODO switch to __make_request
 return self._make_request(method_name, args, kwargs)

 return method

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.6.

