

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	TChannel for Python 0.1.0 documentation

TChannel for Python

[image: build status] [https://travis-ci.org/uber/tchannel-python] [image: coverage] [https://coveralls.io/github/uber/tchannel-python?branch=master]

A Python implementation of TChannel [http://tchannel.readthedocs.org/].

	Getting Started
	Initial Setup

	Thrift Interface Definition

	Python Server

	Handlers

	Hyperbahn

	Debugging

	Python Client

	API Documentation
	TChannel

	Exceptions

	Thrift

	Synchronous Client

	Testing

	Changelog
	0.15.3 (2015-08-25)

	0.15.2 (2015-08-07)

	0.15.1 (2015-08-07)

	0.15.0 (2015-08-06)

	0.14.0 (2015-08-03)

	0.13.0 (2015-07-23)

	0.12.0 (2015-07-20)

	0.11.2 (2015-07-20)

	0.11.1 (2015-07-17)

	0.11.0 (2015-07-17)

	0.10.3 (2015-07-13)

	0.10.2 (2015-07-13)

	0.10.1 (2015-07-10)

	0.10.0 (2015-07-10)

	0.9.1 (2015-07-09)

	0.9.0 (2015-07-07)

	0.8.5 (2015-06-30)

	0.8.4 (2015-06-17)

	0.8.3 (2015-06-15)

	0.8.2 (2015-06-11)

	0.8.1 (2015-06-10)

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TChannel for Python 0.1.0 documentation

Getting Started

The code matching this guide is here [https://github.com/uber/tchannel-python/tree/master/examples/keyvalue].

Initial Setup

Create a directory called keyvalue to work inside of:

$ mkdir ~/keyvalue
$ cd ~/keyvalue

Inside of this directory we’re also going to create a keyvalue module, which
requires an __init__.py and a setup.py at the root:

$ mkdir keyvalue
$ touch keyvalue/__init__.py

Setup a virtual environment [https://virtualenv.pypa.io/en/latest/] for your
service and install the tornado and tchannel:

$ virtualenv env
$ source env/bin/activate
$ pip install tchannel thrift tornado

Thrift Interface Definition

Create a Thrift [https://thrift.apache.org/] file under
thrift/service.thrift that defines an interface for your service:

$ mkdir thrift
$ vim thrift/service.thrift
$ cat thrift/service.thrift

exception NotFoundError {
 1: string key,
}

service KeyValue {
 string getValue(
 1: string key,
) throws (
 1: NotFoundError notFound,
)

 void setValue(
 1: string key,
 2: string value,
)
}

This defines a service named KeyValue with two functions:

	getValue

	a function which takes one string parameter, and returns a string.

	setValue

	a void function that takes in two parameters.

Once you have defined your service, generate corresponding Thrift types by
running the following:

$ thrift --gen py:new_style,dynamic,slots,utf8strings \
 -out keyvalue thrift/service.thrift

This generates client- and server-side code to interact with your service.

You may want to verify that your thrift code was generated successfully:

$ python -m keyvalue.service.KeyValue

Python Server

To serve an application we need to instantiate a TChannel instance, which we
will register handlers against. Open up keyvalue/server.py and write
something like this:

from __future__ import absolute_import

from tornado import ioloop
from tornado import gen

from service import KeyValue
from tchannel.tornado import TChannel

app = TChannel('keyvalue-server')

@app.register(KeyValue)
def getValue(request, response, tchannel):
 pass

@app.register(KeyValue)
def setValue(request, response, tchannel):
 pass

def run():
 app.listen()

if __name__ == '__main__':
 run()
 ioloop.IOLoop.current().start()

Here we have created a TChannel instance and registered two no-op handlers with
it. The name of these handlers map directly to the Thrift service we defined
earlier.

NOTE: Method handlers do not need to be declared at import-time, since this
can become unwieldy in complex applications. We could also define them like
so:

def run():
 app = TChannel('keyvalue-server')
 app.register(KeyValue, handler=Get)
 app.register(KeyValue, handler=Set)
 app.listen()
 ioloop.IOLoop.current().start()

A TChannel server only has one requirement: a name for itself. By default an
ephemeral port will be chosen to listen on (although an explicit port can be
provided).

(As your application becomes more complex, you won’t want to put everything in
a single file like this. Good code structure is beyond the scope of this
guide.)

Let’s make sure this server is in a working state:

python keyvalue/server.py
^C

The process should hang until you kill it, since it’s listening for requests to
handle. You shouldn’t get any exceptions.

Handlers

To implement our service’s endpoints let’s create an in-memory dictionary that
our endpoints will manipulate:

values = {}

@app.register(KeyValue)
def getValue(request, response, tchannel):
 key = request.args.key
 value = values.get(key)

 if value is None:
 raise KeyValue.NotFoundError(key)

 return value

@app.register(KeyValue)
def setValue(request, response, tchannel):
 key = request.args.key
 value = request.args.value
 values[key] = value

You can see that the return value of Get will be coerced into the expected
Thrift shape. If we needed to return an additional field, we could accomplish
this by returning a dictionary.

This example service doesn’t do any network IO work. If we wanted to take
advantage of Tornado’s asynchronous [http://tornado.readthedocs.org/en/latest/gen.html] capabilities, we could
define our handlers as coroutines and yield to IO operations:

@app.register(KeyValue)
@gen.coroutine
def setValue(request, response, tchannel):
 key = request.args.key
 value = request.args.value

 # Simulate some non-blocking IO work.
 yield gen.sleep(1.0)

 values[key] = value

You have probably noticed that all of these handlers are passed response and
tchannel objects, in addition to a request. The response object is
available for advanced use cases where it doesn’t make sense to return one
object as a response body – for example, long-lived connections that gradually
stream the response back to the caller.

The tchannel object contains context about the current request (such as
Zipkin tracing information) and should be used to make requests to other
TChannel services. (Note that this API may change in the future.)

Transport Headers

In addition to the call arguments and headers, the request object also
provides some additional information about the current request under the
request.transport object:

	transport.flags

	Request flags used by the protocol for fragmentation and streaming.

	transport.ttl

	The time (in milliseconds) within which the caller expects a response.

	transport.headers

	Protocol level headers for the request. For more information on transport
headers check the
Transport Headers [https://github.com/uber/tchannel/blob/master/docs/protocol.md#transport-headers]
section of the protocol document.

Hyperbahn

As mentioned earlier, our service is listening on an ephemeral port, so we are
going to register it with the Hyperbahn routing mesh. Clients will use this
Hyperbahn mesh to determine how to communicate with your service.

Let’s change our run method to advertise our service with a local Hyperbahn
instance:

import json
import os

@gen.coroutine
def run():

 app.listen()
 print 'Listening on', app.hostport

 if os.path.exists('/path/to/hyperbahn_hostlist.json'):
 with open('/path/to/hyperbahn_hostlist.json', 'r') as f:
 hyperbahn_hostlist = json.load(f)
 yield app.advertise(routers=hyperbahn_hostlist)

The advertise method takes a seed list of Hyperbahn routers and the name of
the service that clients will call into. After advertising, the Hyperbahn will
connect to your process and establish peers for service-to-service
communication.

Consult the Hyperbahn documentation for instructions on how to start a process
locally.

Debugging

Let’s spin up the service and make a request to it through Hyperbahn. Python
provides tcurl.py script, but we need to use the Node
version [https://github.com/uber/tcurl] for now since it has Thrift support.

$ python keyvalue/server.py &
$ tcurl -H /path/to/hyperbahn_host_list.json -t ~/keyvalue/thrift/service.thrift service KeyValue::setValue -3 '{"key": "hello", "value": "world"}'
$ tcurl -H /path/to/hyperbahn_host_list.json -t ~/keyvalue/thrift/service.thrift service KeyValue::getValue -3 '{"key": "hello"}'
$ tcurl -H /path/to/hyperbahn_host_list.json -t ~/keyvalue/thrift/service.thrift service KeyValue::getValue -3 '{"key": "hi"}'

Your service can now be accessed from any language over Hyperbahn + TChannel!

Python Client

Let’s make a client call from Python in keyvalue/client.py:

from tornado import gen
from tornado import ioloop
from tchannel.thrift import client_for
from tchannel.tornado import TChannel

from service import KeyValue

KeyValueClient = client_for('keyvalue-server', KeyValue)

@gen.coroutine
def run():
 app_name = 'keyvalue-client'

 app = TChannel(app_name)
 app.advertise(routers=['127.0.0.1:21300'])

 client = KeyValueClient(app)

 yield client.setValue("foo", "bar")

 response = yield client.getValue("foo")

 print response

if __name__ == '__main__':
 ioloop.IOLoop.current().run_sync(run)

Similar to the server case, we initialize a TChannel instance and advertise
ourselves on Hyperbahn (to establish how to communicate with keyval-server).
After this we create a client class to add TChannel functionality to our
generated Thrift code. We then set and retrieve a value from our server.

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TChannel for Python 0.1.0 documentation

API Documentation

TChannel

	
class tchannel.TChannel(name, hostport=None, process_name=None, known_peers=None, trace=False)[source]

	Make requests to TChannel services.

	
call(*args, **kwargs)[source]

	Make low-level requests to TChannel services.

This method uses TChannel’s protocol terminology for param naming.

For high level requests with automatic serialization and semantic
param names, use raw, json, and thrift methods instead.

	Parameters:	
	scheme (string) – Name of the Arg Scheme to be sent as the Transport Header as;
eg. ‘raw’, ‘json’, ‘thrift’ are all valid values.

	service (string) – Name of the service that is being called. This is used
internally to route requests through Hyperbahn, and for grouping
of connection, and labelling stats. Note that when hostport is
provided, requests are not routed through Hyperbahn.

	arg1 (string) – Value for arg1 as specified by the TChannel protocol - this
varies by Arg Scheme, but is typically used for endpoint name.

	arg2 (string) – Value for arg2 as specified by the TChannel protocol - this
varies by Arg Scheme, but is typically used for app-level headers.

	arg3 (string) – Value for arg3 as specified by the TChannel protocol - this
varies by Arg Scheme, but is typically used for the request body.

	timeout (int) – How long to wait before raising a TimeoutError - this
defaults to tchannel.glossary.DEFAULT_TIMEOUT.

	retry_on (string) – What events to retry on - valid values can be found in
tchannel.retry.

	retry_limit (string) – How many times to retry before

	hostport (string) – A ‘host:port’ value to use when making a request directly to a
TChannel service, bypassing Hyperbahn.

	
class tchannel.schemes.RawArgScheme(tchannel)[source]

	Semantic params and serialization for raw.

	
class tchannel.schemes.JsonArgScheme(tchannel)[source]

	Semantic params and serialization for json.

	
class tchannel.schemes.ThriftArgScheme(tchannel)[source]

	Semantic params and serialization for Thrift.

	
class tchannel.tornado.RequestDispatcher[source]

	A synchronous RequestHandler that dispatches calls to different
endpoints based on arg1.

Endpoints are registered using register or the route
decorator.

handler = # ...

@handler.route('my_method')
def my_method(request, response, proxy):
 response.write('hello world')

	
static not_found(request, response, proxy)[source]

	Default behavior for requests to unrecognized endpoints.

	
register(rule, handler, broker=None)[source]

	Register a new endpoint with the given name.

@dispatcher.register('is_healthy')
def check_health(request, response, proxy):
 # ...

	Parameters:	
	rule – Name of the endpoint. Incoming Call Requests must have this as
arg1 to dispatch to this handler.

If RequestHandler.FALLBACK is specified as a rule, the given
handler will be used as the ‘fallback’ handler when requests don’t
match any registered rules.

	handler – A function that gets called with Request, Response, and
the proxy.

	broker – Broker injects customized serializer and deserializer into
request/response object.

broker==None means it registers as raw handle. It deals with raw
buffer in the request/response.

	
route(rule, helper=None)[source]

	See register for documentation.

	
class tchannel.tornado.Request(id=None, flags=0, ttl=1000, tracing=None, service=None, headers=None, checksum=None, argstreams=None, scheme=None, endpoint=None)[source]

	Represents an incoming request to an endpoint.

Request class is used to represent the CallRequestMessage at User’s level.
This is going to hide the protocol level message information.

	
get_body(*args, **kwargs)[source]

	Get the body value from the resquest.

	Returns:	a future contains the deserialized value of body

	
get_body_s()[source]

	Get the raw stream of body.

	Returns:	the argstream of body

	
get_header(*args, **kwargs)[source]

	Get the header value from the request.

	Returns:	a future contains the deserialized value of header

	
get_header_s()[source]

	Get the raw stream of header.

	Returns:	the argstream of header

	
should_retry_on_error(error)[source]

	rules for retry

	Parameters:	error – ProtocolException that returns from Server

	
class tchannel.tornado.Response(connection=None, id=None, flags=None, code=None, tracing=None, headers=None, checksum=None, argstreams=None, scheme=None)[source]

	An outgoing response.

Response class is used to represent the CallResponseMessage at User’s
level. This is going to hide the protocol level message information.

	
flush()[source]

	Flush the response buffer.

No more write or set operations is allowed after flush call.

	
get_body(*args, **kwargs)[source]

	Get the body value from the response.

	Returns:	a future contains the deserialized value of body

	
get_body_s()[source]

	Get the raw stream of body.

	Returns:	the argstream of body

	
get_header(*args, **kwargs)[source]

	Get the header value from the response.

	Returns:	a future contains the deserialized value of header

	
get_header_s()[source]

	Get the raw stream of header.

	Returns:	the argstream of header

	
set_body_s(stream)[source]

	Set customized body stream.

Note: the body stream can only be changed before the stream
is consumed.

	Parameters:	stream – InMemStream/PipeStream for body

	Raises TChannelError:

		Raise TChannelError if the stream is being sent when you try
to change the stream.

	
set_header_s(stream)[source]

	Set customized header stream.

Note: the header stream can only be changed before the stream
is consumed.

	Parameters:	stream – InMemStream/PipeStream for header

	Raises TChannelError:

		Raise TChannelError if the stream is being sent when you try
to change the stream.

	
write_body(chunk)[source]

	Write to header.

Note: whenever write_body is called, the header stream will be closed.
write_header method is unavailable.

	Parameters:	chunk – content to write to body

	Raises TChannelError:

		Raise TChannelError if the response’s flush() has been called

	
write_header(chunk)[source]

	Write to header.

Note: the header stream is only available to write before write body.

	Parameters:	chunk – content to write to header

	Raises TChannelError:

		Raise TChannelError if the response’s flush() has been called

Exceptions

	
exception tchannel.errors.AdvertiseError[source]

	Represent advertise failure exception

	
exception tchannel.errors.AlreadyListeningError[source]

	Represents exception from attempting to listen multiple times.

	
exception tchannel.errors.InvalidChecksumError[source]

	Represent invalid checksum type in the message

	
exception tchannel.errors.InvalidEndpointError[source]

	Represent an message containing invalid endpoint.

	
exception tchannel.errors.InvalidErrorCodeError(code)[source]

	Represent Invalid Error Code exception

	
exception tchannel.errors.InvalidMessageError[source]

	Represent an invalid message.

	
exception tchannel.errors.NoAvailablePeerError[source]

	Represents a failure to find any peers for a request.

	
exception tchannel.errors.OneWayNotSupportedError[source]

	Raised when oneway Thrift procedure is called.

	
exception tchannel.errors.ProtocolError(code, description, id=None, tracing=None)[source]

	Represent a protocol-level exception

	
exception tchannel.errors.ReadError[source]

	Raised when there is an error while reading input.

	
exception tchannel.errors.StreamingError[source]

	Represent Streaming Message Exception

	
exception tchannel.errors.TChannelApplicationError(code, args)[source]

	The remote application returned an exception.

This is not a protocol error. This means a response was received with the
code flag set to fail.

	
exception tchannel.errors.TChannelError[source]

	Represent a TChannel-generated exception.

	
exception tchannel.errors.ValueExpectedError[source]

	Raised when a non-void Thrift response contains no value.

Thrift

	
tchannel.thrift.client.client_for(service, service_module, thrift_service_name=None)[source]

	Build a client class for the given Thrift service.

The generated class accepts a TChannel and an optional hostport as
initialization arguments.

Given CommentService defined in comment.thrift and registered with
Hyperbahn under the name “comment”, here’s how this may be used:

from comment import CommentService

CommentServiceClient = client_for("comment", CommentService)

@gen.coroutine
def post_comment(articleId, msg, hostport=None):
 client = CommentServiceClient(tchannel, hostport)
 yield client.postComment(articleId, CommentService.Comment(msg))

	Parameters:	
	service – Name of the Hyperbahn service being called. This is the name with
which the service registered with Hyperbahn.

	service_module – The Thrift-generated module for that service. This usually has the
same name as defined for the service in the IDL.

	thrift_service_name – If the Thrift service has a different name than its module, use this
parameter to specify it.

	Returns:	An object with the same interface as the service that uses the given
TChannel to call the service.

	
tchannel.thrift.client.generate_method(service_module, service_name, method_name)[source]

	Generate a method for the given Thrift service.

	Parameters:	
	service_module – Thrift-generated service module

	service_name – Name of the Thrift service

	method_name – Method being called

Synchronous Client

	
class tchannel.sync.client.Response(header, body)

	
	
body

	Alias for field number 1

	
header

	Alias for field number 0

	
class tchannel.sync.client.SyncClientOperation(operation, threadloop)[source]

	Allows making client operation requests synchronously.

This object acts like tchannel.TChannelClientOperation, but instead
uses a threadloop to make the request synchronously.

	
send(arg1, arg2, arg3)[source]

	Send the given triple over the wire.

	Parameters:	
	arg1 – String containing the contents of arg1. If None, an empty string
is used.

	arg2 – String containing the contents of arg2. If None, an empty string
is used.

	arg3 – String containing the contents of arg3. If None, an empty string
is used.

	Return concurrent.futures.Future:

		Future response from the peer.

	
class tchannel.sync.client.TChannelSyncClient(name, process_name=None, known_peers=None, trace=False)[source]

	Make synchronous TChannel requests.

This client does not support incoming connections or requests- this is
a uni-directional client only.

The client is implemented on top of the Tornado-based implementation and
starts and stops IOLoops on-demand.

client = TChannelSyncClient()
response = client.request(
 hostport='localhost:4040',
 service='HelloService',
).send(
 'hello', None, json.dumps({"name": "World"})
)

	
advertise(routers, name=None, timeout=None)[source]

	Advertise with Hyperbahn.

	Parameters:	
	routers – list of hyperbahn addresses to advertise to.

	name – service name to advertise with.

	timeout – backoff period for failed requests.

	Returns:	first advertise result.

	Raises AdvertiseError:

		when unable to begin advertising.

	
request(*args, **kwargs)[source]

	Initiate a new request to a peer.

	Parameters:	
	hostport – If specified, requests will be sent to the specific host.
Otherwise, a known peer will be picked at random.

	service – Name of the service being called. Defaults to an empty string.

	service_threshold – If hostport was not specified, this specifies the score
threshold at or below which peers will be ignored.

	Returns SyncClientOperation:

		An object with a send(arg1, arg2, arg3) operation.

	
tchannel.sync.thrift.client_for(service, service_module, thrift_service_name=None)[source]

	Build a synchronous client class for the given Thrift service.

The generated class accepts a TChannelSyncClient and an optional
hostport as initialization arguments.

Given CommentService defined in comment.thrift and registered
with Hyperbahn under the name “comment”, here’s how this might be used:

from tchannel.sync import TChannelSyncClient
from tchannel.sync.thrift import client_for

from comment import CommentService

CommentServiceClient = client_for('comment', CommentService)

tchannel_sync = TChannelSyncClient('my-service')
comment_client = CommentServiceClient(tchannel_sync)

future = comment_client.postComment(
 articleId,
 CommentService.Comment("hi")
)
result = future.result()

	Parameters:	
	service – Name of the Hyperbahn service being called.

	service_module – The Thrift-generated module for that service. This usually has
the same name as definied for the service in the IDL.

	thrift_service_name – If the Thrift service has a different name than its module, use
this parameter to specify it.

	Returns:	An Thrift-like class, ready to be instantiated and used
with TChannelSyncClient.

	
tchannel.sync.thrift.generate_method(method_name)[source]

	Generate a method for a given Thrift service.

Uses the provided TChannelSyncClient’s threadloop in order
to convert RPC calls to concurrent.futures

	Parameters:	method_name – Method being called.

	Returns:	A method that invokes the RPC using TChannelSyncClient

Testing

VCR

tchannel.testing.vcr provides VCR-like functionality for TChannel. Its
API is heavily inspired by the vcrpy [https://github.com/kevin1024/vcrpy/]
library.

This allows recording TChannel requests and their responses into YAML files
during integration tests and replaying those recorded responses when the tests
are run next time.

The simplest way to use this is with the use_cassette() function.

	
tchannel.testing.vcr.use_cassette(path, record_mode=None, inject=False)[source]

	Use or create a cassette to record/replay TChannel requests.

This may be used as a context manager or a decorator.

from tchannel.testing import vcr

@pytest.mark.gen_test
@vcr.use_cassette('tests/data/foo.yaml')
def test_foo():
 channel = TChannel('test-client')
 service_client = MyServiceClient(channel)

 yield service_client.myMethod()

def test_bar():
 with vcr.use_cassette('tests/data/bar.yaml', record_mode='none'):
 # ...

Note that when used as a decorator on a coroutine, the use_cassette
decorator must be applied BEFORE gen.coroutine or
pytest.mark.gen_test.

	Parameters:	
	path – Path to the cassette. If the cassette did not already exist, it will
be created. If it existed, its contents will be replayed (depending on
the record mode).

	record_mode – The record mode dictates whether a cassette is allowed to record or
replay interactions. This may be a string specifying the record mode
name or an element from the
tchannel.testing.vcr.RecordMode object. This parameter
defaults to tchannel.testing.vcr.RecordMode.ONCE. See
tchannel.testing.vcr.RecordMode for details on supported
record modes and how to use them.

	inject – If True, when use_cassette is used as a decorator, the cassette
object will be injected into the function call as the first argument.
Defaults to False.

Configuration

Record Modes

	
class tchannel.testing.vcr.RecordMode[source]

	Record modes dictate how a cassette behaves when interactions are replayed
or recorded. The following record modes are supported.

	
ONCE = 'once'

	If the YAML file did not exist, record new interactions and save them.
If the YAML file already existed, replay existing interactions but
disallow any new interactions. This is the default and usually what you
want.

	
NEW_EPISODES = 'new_episodes'

	Replay existing interactions and allow recording new ones. This is
usually undesirable since it reduces predictability in tests.

	
NONE = 'none'

	Replay existing interactions and disallow any new interactions. This
is a good choice for tests whose behavior is unlikely to change in the
near future. It ensures that those tests don’t accidentally start
making new requests.

	
ALL = 'all'

	Do not replay anything and record all new interactions. Forget all
existing interactions. This may be used to record everything anew.

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	TChannel for Python 0.1.0 documentation

Changelog

0.15.3 (2015-08-25)

	Backported unhandled exception logging from 0.16.

0.15.2 (2015-08-07)

	Raise informative and obvious ValueError when anything
but a map[string]string is passed as headers to the TChannel.thrift method.

	First param, request, in tchannel.thrift method is required.

0.15.1 (2015-08-07)

	Raise tchannel.errors.ValueExpectedError when calling a non-void Thrift procedure
that returns no value.

0.15.0 (2015-08-06)

	Introduced new top level tchannel.TChannel object, with new request methods
call, raw, json, and thrift. This will eventually replace the
akward request / send calling pattern.

	Introduced tchannel.thrift_request_builder function for creating a
request builder to be used with the tchannel.TChannel.thrift function.

	Introduced new simplified examples under the examples/simple directory, moved
the Guide’s examples to examples/guide, and deleted the remaining examples.

	Added ThriftTest.thrift and generated Thrift code to tchannel.testing.data for
use with examples and playing around with TChannel.

	Fix JSON arg2 (headers) being returned a string instead of a dict.

0.14.0 (2015-08-03)

	Implement VCR functionality for outgoing requests. Check the documentation
for tchannel.testing.vcr for details.

	Add support for specifying fallback handlers via TChannel.register by
specifying TChannel.fallback as the endpoint.

	Fix bug in Response where code expected an object instead of an
integer.

	Fix bug in Peer.close where a future was expected instead of None.

0.13.0 (2015-07-23)

	Add support for specifying transport headers for Thrift clients.

	Always pass shardKey for TCollector tracing calls. This fixes Zipkin tracing for Thrift clients.

0.12.0 (2015-07-20)

	Add TChannel.is_listening() to determine if listen has been called.

	Calling TChannel.listen() more than once raises a tchannel.errors.AlreadyListeningError.

	TChannel.advertise() will now automatically start listening for connections
if listen() has not already been called.

	Use threadloop==0.4.

	Removed print_arg.

0.11.2 (2015-07-20)

	Fix sync client’s advertise - needed to call listen in thread.

0.11.1 (2015-07-17)

	Fix sync client using 0.0.0.0 host which gets rejected by Hyperbahn during advertise.

0.11.0 (2015-07-17)

	Added advertise support to sync client in tchannel.sync.TChannelSyncClient.advertise.

	BREAKING - renamed router argument to routers in tchannel.tornado.TChannel.advertise.

0.10.3 (2015-07-13)

	Support PyPy 2.

	Fix bugs in TChannel.advertise.

0.10.2 (2015-07-13)

	Made TChannel.advertise retry on all exceptions.

0.10.1 (2015-07-10)

	Previous release was broken with older versions of pip.

0.10.0 (2015-07-10)

	Add exponential backoff to TChannel.advertise.

	Make transport metadata available under request.transport on the
server-side.

0.9.1 (2015-07-09)

	Use threadloop 0.3.* to fix main thread not exiting when tchannel.sync.TChannelSyncClient is used.

0.9.0 (2015-07-07)

	Allow custom handlers for unrecognized endpoints.

	Released tchannel.sync.TChannelSyncClient and tchannel.sync.thrift.client_for.

0.8.5 (2015-06-30)

	Add port parameter for TChannel.listen.

0.8.4 (2015-06-17)

	Fix bug where False and False-like values were being treated as None in
Thrift servers.

0.8.3 (2015-06-15)

	Add as attribute to the response header.

0.8.2 (2015-06-11)

	Fix callable traceflag being propagated to the serializer.

	Fix circular imports.

	Fix TimeoutError retry logic.

0.8.1 (2015-06-10)

	Initial release.

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	TChannel for Python 0.1.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tchannel	

 	
 	
 tchannel.errors	

 	
 	
 tchannel.sync.client	

 	
 	
 tchannel.sync.thrift	

 	
 	
 tchannel.testing.vcr	

 	
 	
 tchannel.thrift.client	

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	TChannel for Python 0.1.0 documentation

Index

 A
 | B
 | C
 | F
 | G
 | H
 | I
 | J
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	advertise() (tchannel.sync.client.TChannelSyncClient method)

 	AdvertiseError

 	

 	ALL (tchannel.testing.vcr.RecordMode attribute)

 	AlreadyListeningError

B

 	

 	body (tchannel.sync.client.Response attribute)

C

 	

 	call() (tchannel.TChannel method)

 	

 	client_for() (in module tchannel.sync.thrift)

 	

 	(in module tchannel.thrift.client)

F

 	

 	flush() (tchannel.tornado.Response method)

G

 	

 	generate_method() (in module tchannel.sync.thrift)

 	

 	(in module tchannel.thrift.client)

 	get_body() (tchannel.tornado.Request method)

 	

 	(tchannel.tornado.Response method)

 	get_body_s() (tchannel.tornado.Request method)

 	

 	(tchannel.tornado.Response method)

 	

 	get_header() (tchannel.tornado.Request method)

 	

 	(tchannel.tornado.Response method)

 	get_header_s() (tchannel.tornado.Request method)

 	

 	(tchannel.tornado.Response method)

H

 	

 	header (tchannel.sync.client.Response attribute)

I

 	

 	InvalidChecksumError

 	InvalidEndpointError

 	

 	InvalidErrorCodeError

 	InvalidMessageError

J

 	

 	JsonArgScheme (class in tchannel.schemes)

N

 	

 	NEW_EPISODES (tchannel.testing.vcr.RecordMode attribute)

 	NoAvailablePeerError

 	

 	NONE (tchannel.testing.vcr.RecordMode attribute)

 	not_found() (tchannel.tornado.RequestDispatcher static method)

O

 	

 	ONCE (tchannel.testing.vcr.RecordMode attribute)

 	

 	OneWayNotSupportedError

P

 	

 	ProtocolError

R

 	

 	RawArgScheme (class in tchannel.schemes)

 	ReadError

 	RecordMode (class in tchannel.testing.vcr)

 	register() (tchannel.tornado.RequestDispatcher method)

 	Request (class in tchannel.tornado)

 	

 	request() (tchannel.sync.client.TChannelSyncClient method)

 	RequestDispatcher (class in tchannel.tornado)

 	Response (class in tchannel.sync.client)

 	

 	(class in tchannel.tornado)

 	route() (tchannel.tornado.RequestDispatcher method)

S

 	

 	send() (tchannel.sync.client.SyncClientOperation method)

 	set_body_s() (tchannel.tornado.Response method)

 	set_header_s() (tchannel.tornado.Response method)

 	

 	should_retry_on_error() (tchannel.tornado.Request method)

 	StreamingError

 	SyncClientOperation (class in tchannel.sync.client)

T

 	

 	TChannel (class in tchannel)

 	tchannel.errors (module)

 	tchannel.sync.client (module)

 	tchannel.sync.thrift (module)

 	tchannel.testing.vcr (module)

 	

 	tchannel.thrift.client (module)

 	TChannelApplicationError

 	TChannelError

 	TChannelSyncClient (class in tchannel.sync.client)

 	ThriftArgScheme (class in tchannel.schemes)

U

 	

 	use_cassette() (in module tchannel.testing.vcr)

V

 	

 	ValueExpectedError

W

 	

 	write_body() (tchannel.tornado.Response method)

 	

 	write_header() (tchannel.tornado.Response method)

 Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/down-pressed.png

_modules/tchannel/tornado/dispatch.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.tornado.dispatch

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

import logging
from collections import defaultdict

import tornado
import tornado.gen
from tornado import gen

from ..errors import InvalidEndpointError
from ..errors import InvalidMessageError
from ..errors import TChannelError
from ..event import EventType
from ..handler import BaseRequestHandler
from ..messages.error import ErrorCode
from .broker import ArgSchemeBroker
from .response import Response

log = logging.getLogger('tchannel')

[docs]class RequestDispatcher(BaseRequestHandler):
 """A synchronous RequestHandler that dispatches calls to different
 endpoints based on ``arg1``.

 Endpoints are registered using ``register`` or the ``route``
 decorator.

 .. code-block:: python

 handler = # ...

 @handler.route('my_method')
 def my_method(request, response, proxy):
 response.write('hello world')
 """

 FALLBACK = object()

 def __init__(self):
 super(RequestDispatcher, self).__init__()
 self.default_broker = ArgSchemeBroker()
 self.endpoints = defaultdict(lambda: self.not_found)

 @tornado.gen.coroutine
 def handle_call(self, request, connection):
 # read arg_1 so that handle_call is able to get the endpoint
 # name and find the endpoint handler.
 # the arg_1 value will be store in the request.endpoint field.

 # NOTE: after here, the correct way to access value of arg_1 is through
 # request.endpoint. The original argstream[0] is no longer valid. If
 # user still tries read from it, it will return empty.
 chunk = yield request.argstreams[0].read()

 while chunk:
 request.endpoint += chunk
 chunk = yield request.argstreams[0].read()

 log.info('Received a call to %s.', request.endpoint)

 # event: receive_request
 request.tracing.name = request.endpoint

 connection.tchannel.event_emitter.fire(
 EventType.before_receive_request,
 request,
)

 endpoint = self.endpoints[request.endpoint]

 response = Response(
 id=request.id,
 checksum=request.checksum,
 tracing=request.tracing,
 connection=connection,
 headers={'as': request.headers.get('as', 'raw')},
)

 connection.post_response(response)

 try:
 yield gen.maybe_future(
 endpoint(
 request,
 response,
 TChannelProxy(
 connection.tchannel,
 request.tracing,
),
)
)
 response.flush()
 except (InvalidMessageError, InvalidEndpointError) as e:
 log.warn('Received a bad request.')

 response.set_exception(e)
 connection.request_message_factory.remove_buffer(response.id)
 connection.send_error(
 ErrorCode.bad_request,
 e.message,
 response.id,
)
 except Exception as e:
 msg = "An unexpected error has occurred from the handler"
 log.exception(msg)

 response.set_exception(TChannelError(e.message))
 connection.request_message_factory.remove_buffer(response.id)
 connection.send_error(ErrorCode.unexpected, msg, response.id)

 connection.tchannel.event_emitter.fire(
 EventType.on_application_error,
 request,
 e,
)

 raise gen.Return(response)

[docs] def route(self, rule, helper=None):
 """See ``register`` for documentation."""

 def decorator(handler):
 self.register(rule, handler, helper)
 return handler

 return decorator

[docs] def register(self, rule, handler, broker=None):
 """Register a new endpoint with the given name.

 .. code-block:: python

 @dispatcher.register('is_healthy')
 def check_health(request, response, proxy):
 # ...

 :param rule:
 Name of the endpoint. Incoming Call Requests must have this as
 ``arg1`` to dispatch to this handler.

 If ``RequestHandler.FALLBACK`` is specified as a rule, the given
 handler will be used as the 'fallback' handler when requests don't
 match any registered rules.

 :param handler:
 A function that gets called with ``Request``, ``Response``, and
 the ``proxy``.

 :param broker:
 Broker injects customized serializer and deserializer into
 request/response object.

 broker==None means it registers as raw handle. It deals with raw
 buffer in the request/response.
 """
 assert handler, "handler must not be None"

 # TODO: Get rid of this Broker thing!! It has the same interface as the
 # Dispatcher but only handles serialization.
 if not broker:
 broker = self.default_broker

 if rule is self.FALLBACK:
 self.endpoints.default_factory = lambda: handler
 return

 broker.register(rule, handler)

 self.endpoints[rule] = broker.handle_call

 @staticmethod
[docs] def not_found(request, response, proxy):
 """Default behavior for requests to unrecognized endpoints."""
 raise InvalidEndpointError(
 "Endpoint '%s' for service '%s' is not defined" % (
 request.endpoint,
 request.service,
),
)

class TChannelProxy(object):
 """TChannel Proxy with additional runtime info

 TChannelProxy contains parent_tracing information which is created by
 received request.

 TChannelProxy will be used as one parameter for the request handler.

 Example::

 def handler(request, response, proxy):

 """
 __slots__ = ('_tchannel', 'parent_tracing')

 def __init__(self, tchannel, parent_tracing=None):
 self._tchannel = tchannel
 self.parent_tracing = parent_tracing

 @property
 def closed(self):
 return self._tchannel.closed

 @property
 def hostport(self):
 return self._tchannel.hostport

 def request(self, hostport=None, service=None, **kwargs):
 kwargs['parent_tracing'] = self.parent_tracing
 return self._tchannel.request(hostport,
 service,
 **kwargs)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_modules/tchannel/testing/vcr/record_modes.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.testing.vcr.record_modes

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

from .exceptions import VCRError

__all__ = ['RecordMode']

class _RecordMode(object):
 """A _RecordMode dictates a cassette's behavior on recording and replays.

 :param name:
 Name of the record mode.
 :param replayable:
 Whether this record mode allows requests to be replayed.
 :param can_record:
 Whether this record mode allows new interactions to be recorded. This
 may be a boolean or a function that accepts the cassette and returns a
 boolean.
 :param save_unplayed:
 Whether the cassette remembers previously saved unplayed interactions
 when the cassette is saved again. This is useful when the record mode
 needs to forget unused interactions.
 """

 __slots__ = ('name', 'replayable', 'can_record', 'save_unplayed')

 def __init__(self, name, replayable, can_record, save_unplayed):
 self.name = name
 self.replayable = replayable
 self.save_unplayed = save_unplayed
 if not callable(can_record):
 self.can_record = (lambda _: can_record)
 else:
 self.can_record = can_record

[docs]class RecordMode(object):
 """
 Record modes dictate how a cassette behaves when interactions are replayed
 or recorded. The following record modes are supported.

 .. autoattribute:: ONCE
 :annotation: = 'once'

 .. autoattribute:: NEW_EPISODES
 :annotation: = 'new_episodes'

 .. autoattribute:: NONE
 :annotation: = 'none'

 .. autoattribute:: ALL
 :annotation: = 'all'
 """

 #: If the YAML file did not exist, record new interactions and save them.
 #: If the YAML file already existed, replay existing interactions but
 #: disallow any new interactions. This is the default and usually what you
 #: want.
 ONCE = _RecordMode(
 name='once',
 replayable=True,
 can_record=(lambda c: not c.existed),
 save_unplayed=True,
)

 #: Replay existing interactions and allow recording new ones. This is
 #: usually undesirable since it reduces predictability in tests.
 NEW_EPISODES = _RecordMode(
 name='new_episodes',
 replayable=True,
 can_record=True,
 save_unplayed=True,
)

 #: Replay existing interactions and disallow any new interactions. This
 #: is a good choice for tests whose behavior is unlikely to change in the
 #: near future. It ensures that those tests don't accidentally start
 #: making new requests.
 NONE = _RecordMode(
 name='none',
 replayable=True,
 can_record=False,
 save_unplayed=True,
)

 #: Do not replay anything and record all new interactions. Forget all
 #: existing interactions. This may be used to record everything anew.
 ALL = _RecordMode(
 name='all',
 replayable=False,
 can_record=True,
 save_unplayed=False,
)

 @classmethod
 def from_name(cls, name):
 """Get a RecordMode by its name."""
 name = name.lower()

 if name not in _MODES:
 raise VCRError(
 'Invalid record mode %s. It must be one of "once", "none", '
 '"all", or "new_episodes". Check the documentation for more '
 'information' % repr(name)
)
 return _MODES[name]

_MODES = {m.name.lower(): m for m in [
 RecordMode.ONCE, RecordMode.NEW_EPISODES, RecordMode.NONE, RecordMode.ALL
]}

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/tornado/response.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.tornado.response

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

import tornado
import tornado.gen

from ..enum import enum
from ..errors import TChannelError
from ..messages.common import FlagsType
from ..messages.common import StreamState
from .stream import InMemStream
from .util import get_arg

StatusCode = enum(
 'StatusCode',
 ok=0x00,
 error=0x01,
)

[docs]class Response(object):
 """An outgoing response.

 Response class is used to represent the CallResponseMessage at User's
 level. This is going to hide the protocol level message information.
 """

 # TODO decide which elements inside "message" object to expose to user.
 def __init__(
 self,
 connection=None,
 id=None,
 flags=None,
 code=None,
 tracing=None,
 headers=None,
 checksum=None,
 argstreams=None,
 scheme=None,
):

 self.flags = flags or FlagsType.none
 self.code = code or StatusCode.ok
 self.tracing = tracing
 self.checksum = checksum
 # argstreams is a list of InMemStream/PipeStream objects
 self.argstreams = argstreams or [InMemStream(),
 InMemStream(),
 InMemStream()]
 self.headers = headers or {}
 self.id = id
 self.connection = connection
 self.state = StreamState.init
 self.flushed = False

 self.scheme = scheme

 @property
 def status_code(self):
 return self.code

 @status_code.setter
 def status_code(self, status):
 if status not in StatusCode:
 raise TChannelError("Invalid status code!")

 self.code = status

 @property
 def ok(self):
 return self.code == StatusCode.ok

[docs] def get_header_s(self):
 """Get the raw stream of header.

 :return: the argstream of header
 """
 return self.argstreams[1]

[docs] def get_body_s(self):
 """Get the raw stream of body.

 :return: the argstream of body
 """
 return self.argstreams[2]

 @tornado.gen.coroutine
[docs] def get_header(self):
 """Get the header value from the response.

 :return: a future contains the deserialized value of header
 """
 raw_header = yield get_arg(self, 1)
 if not self.scheme:
 raise tornado.gen.Return(raw_header)
 else:
 header = self.scheme.deserialize_header(raw_header)
 raise tornado.gen.Return(header)

 @tornado.gen.coroutine
[docs] def get_body(self):
 """Get the body value from the response.

 :return: a future contains the deserialized value of body
 """

 raw_body = yield get_arg(self, 2)
 if not self.scheme:
 raise tornado.gen.Return(raw_body)
 else:
 body = self.scheme.deserialize_body(raw_body)
 raise tornado.gen.Return(body)

[docs] def set_body_s(self, stream):
 """Set customized body stream.

 Note: the body stream can only be changed before the stream
 is consumed.

 :param stream: InMemStream/PipeStream for body

 :except TChannelError:
 Raise TChannelError if the stream is being sent when you try
 to change the stream.
 """
 if self.argstreams[2].state == StreamState.init:
 self.argstreams[2] = stream
 else:
 raise TChannelError(
 "Unable to change the body since the streaming has started")

[docs] def set_header_s(self, stream):
 """Set customized header stream.

 Note: the header stream can only be changed before the stream
 is consumed.

 :param stream: InMemStream/PipeStream for header

 :except TChannelError:
 Raise TChannelError if the stream is being sent when you try
 to change the stream.
 """

 if self.argstreams[1].state == StreamState.init:
 self.argstreams[1] = stream
 else:
 raise TChannelError(
 "Unable to change the header since the streaming has started")

[docs] def write_header(self, chunk):
 """Write to header.

 Note: the header stream is only available to write before write body.

 :param chunk: content to write to header

 :except TChannelError:
 Raise TChannelError if the response's flush() has been called
 """

 if self.scheme:
 header = self.scheme.serialize_header(chunk)
 else:
 header = chunk

 if self.flushed:
 raise TChannelError("write operation invalid after flush call")

 if (self.argstreams[0].state != StreamState.completed and
 self.argstreams[0].auto_close):
 self.argstreams[0].close()

 return self.argstreams[1].write(header)

[docs] def write_body(self, chunk):
 """Write to header.

 Note: whenever write_body is called, the header stream will be closed.
 write_header method is unavailable.

 :param chunk: content to write to body

 :except TChannelError:
 Raise TChannelError if the response's flush() has been called
 """

 if self.scheme:
 body = self.scheme.serialize_body(chunk)
 else:
 body = chunk

 if self.flushed:
 raise TChannelError("write operation invalid after flush call")

 if (self.argstreams[0].state != StreamState.completed and
 self.argstreams[0].auto_close):
 self.argstreams[0].close()
 if (self.argstreams[1].state != StreamState.completed and
 self.argstreams[1].auto_close):
 self.argstreams[1].close()

 return self.argstreams[2].write(body)

[docs] def flush(self):
 """Flush the response buffer.

 No more write or set operations is allowed after flush call.
 """
 self.flushed = True
 self.close_argstreams()

 def set_exception(self, exception):
 for stream in self.argstreams:
 stream.set_exception(exception)
 stream.close()

 def close_argstreams(self, force=False):
 for stream in self.argstreams:
 if stream.auto_close or force:
 stream.close()

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/tornado/request.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.tornado.request

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

from collections import namedtuple

import tornado
import tornado.gen

from tchannel import retry
from ..glossary import DEFAULT_TIMEOUT
from ..messages import ErrorCode
from ..messages.common import FlagsType
from ..messages.common import StreamState
from ..zipkin.trace import Trace
from .stream import InMemStream
from .util import get_arg

[docs]class Request(object):
 """Represents an incoming request to an endpoint.

 Request class is used to represent the CallRequestMessage at User's level.
 This is going to hide the protocol level message information.
 """

 # TODO decide which elements inside "message" object to expose to user.
 def __init__(
 self,
 id=None,
 flags=FlagsType.none,
 ttl=DEFAULT_TIMEOUT,
 tracing=None,
 service=None,
 headers=None,
 checksum=None,
 argstreams=None,
 scheme=None,
 endpoint=None,
):
 self.flags = flags
 self.ttl = ttl
 self.service = service
 self.tracing = tracing or Trace()
 # argstreams is a list of InMemStream/PipeStream objects
 self.argstreams = argstreams or [InMemStream(),
 InMemStream(),
 InMemStream()]
 self.checksum = checksum
 self.id = id
 self.headers = headers or {}
 self.state = StreamState.init
 self.scheme = scheme

 self.is_streaming_request = self._is_streaming_request()
 if not self.is_streaming_request:
 self._copy_argstreams = [
 self.argstreams[0].clone(),
 self.argstreams[1].clone(),
 self.argstreams[2].clone(),
]

 self.endpoint = endpoint or ""

 def rewind(self, id=None):
 self.id = id
 if not self.is_streaming_request:
 self.argstreams = [
 self._copy_argstreams[0].clone(),
 self._copy_argstreams[1].clone(),
 self._copy_argstreams[2].clone(),
]
 self.state = StreamState.init
 self.tracing = Trace()

 @property
 def arg_scheme(self):
 return self.headers.get('as', None)

 def set_exception(self, exception):
 for stream in self.argstreams:
 stream.set_exception(exception)
 stream.close()

 def close_argstreams(self, force=False):
 for stream in self.argstreams:
 if stream.auto_close or force:
 stream.close()

 @tornado.gen.coroutine
[docs] def get_header(self):
 """Get the header value from the request.

 :return: a future contains the deserialized value of header
 """
 raw_header = yield get_arg(self, 1)
 if not self.scheme:
 raise tornado.gen.Return(raw_header)
 else:
 header = self.scheme.deserialize_header(raw_header)
 raise tornado.gen.Return(header)

 @tornado.gen.coroutine
[docs] def get_body(self):
 """Get the body value from the resquest.

 :return: a future contains the deserialized value of body
 """

 raw_body = yield get_arg(self, 2)
 if not self.scheme:
 raise tornado.gen.Return(raw_body)
 else:
 body = self.scheme.deserialize_body(raw_body)
 raise tornado.gen.Return(body)

[docs] def get_header_s(self):
 """Get the raw stream of header.

 :return: the argstream of header
 """
 return self.argstreams[1]

[docs] def get_body_s(self):
 """Get the raw stream of body.

 :return: the argstream of body
 """
 return self.argstreams[2]

 def _is_streaming_request(self):
 """check request is stream request or not"""
 arg2 = self.argstreams[1]
 arg3 = self.argstreams[2]
 return not (isinstance(arg2, InMemStream) and
 isinstance(arg3, InMemStream) and
 ((arg2.auto_close and arg3.auto_close) or (
 arg2.state == StreamState.completed and
 arg3.state == StreamState.completed)))

[docs] def should_retry_on_error(self, error):
 """rules for retry

 :param error:
 ProtocolException that returns from Server
 """

 if self.is_streaming_request:
 # not retry for streaming request
 return False

 retry_flag = self.headers.get('re', retry.DEFAULT)

 if retry_flag == retry.NEVER:
 return False

 if error.code in [ErrorCode.bad_request, ErrorCode.cancelled,
 ErrorCode.unhealthy]:
 return False
 elif error.code in [ErrorCode.busy, ErrorCode.declined]:
 return True
 elif error.code is ErrorCode.timeout:
 return retry_flag is not retry.CONNECTION_ERROR
 elif error.code in [ErrorCode.network_error,
 ErrorCode.fatal,
 ErrorCode.unexpected]:
 return retry_flag is not retry.TIMEOUT
 else:
 return False

class TransportMetadata(
 namedtuple('_Metadata', 'flags ttl service id headers')
):
 """A read-only representation of the metadata contained in the Request."""

 @classmethod
 def from_request(cls, request):
 return cls(
 flags=request.flags,
 ttl=request.ttl,
 service=request.service,
 id=request.id,
 headers=request.headers,
)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_static/minus.png

_modules/tchannel/schemes/json.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.schemes.json

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

import json

from tornado import gen

from . import JSON

[docs]class JsonArgScheme(object):
 """Semantic params and serialization for json."""

 NAME = JSON

 def __init__(self, tchannel):
 self._tchannel = tchannel

 @gen.coroutine
 def __call__(self, service, endpoint, body=None, headers=None,
 timeout=None, retry_on=None, retry_limit=None, hostport=None):
 """Make JSON TChannel Request.

 .. code-block: python

 from tchannel import TChannel

 tchannel = TChannel('my-service')

 resp = tchannel.json(
 service='some-other-service',
 endpoint='get-all-the-crackers',
 body={
 'some': 'dict',
 },
)

 :param string service:
 Name of the service to call.
 :param string endpoint:
 Endpoint to call on service.
 :param string body:
 A raw body to provide to the endpoint.
 :param string headers:
 A raw headers block to provide to the endpoint.
 :param int timeout:
 How long to wait before raising a ``TimeoutError`` - this
 defaults to ``tchannel.glossary.DEFAULT_TIMEOUT``.
 :param string retry_on:
 What events to retry on - valid values can be found in
 ``tchannel.retry``.
 :param string retry_limit:
 How many times to retry before
 :param string hostport:
 A 'host:port' value to use when making a request directly to a
 TChannel service, bypassing Hyperbahn.
 :return Response:
 """

 # TODO should we not default these?
 if headers is None:
 headers = {}

 # TODO dont default?
 if body is None:
 body = {}

 # serialize
 headers = json.dumps(headers)
 body = json.dumps(body)

 response = yield self._tchannel.call(
 scheme=self.NAME,
 service=service,
 arg1=endpoint,
 arg2=headers,
 arg3=body,
 timeout=timeout,
 retry_on=retry_on,
 retry_limit=retry_limit,
 hostport=hostport,
)

 # deserialize
 response.headers = json.loads(response.headers)
 response.body = json.loads(response.body)

 raise gen.Return(response)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/schemes/thrift.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.schemes.thrift

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from tornado import gen

from . import THRIFT
from tchannel.errors import ValueExpectedError
from tchannel.thrift import serializer

[docs]class ThriftArgScheme(object):
 """Semantic params and serialization for Thrift."""

 NAME = THRIFT

 def __init__(self, tchannel):
 self._tchannel = tchannel

 @gen.coroutine
 def __call__(self, request, headers=None, timeout=None,
 retry_on=None, retry_limit=None):

 if not headers:
 headers = {}

 # serialize
 try:
 headers = serializer.serialize_headers(headers=headers)
 except (AttributeError, TypeError):
 raise ValueError(
 'headers must be a map[string]string (a shallow dict'
 ' where keys and values are strings)'
)

 body = serializer.serialize_body(call_args=request.call_args)

 response = yield self._tchannel.call(
 scheme=self.NAME,
 service=request.service,
 arg1=request.endpoint,
 arg2=headers,
 arg3=body,
 timeout=timeout,
 retry_on=retry_on,
 retry_limit=retry_limit,
 hostport=request.hostport
)

 # deserialize...

 response.headers = serializer.deserialize_headers(
 headers=response.headers
)
 body = serializer.deserialize_body(
 body=response.body,
 result_type=request.result_type
)
 result_spec = request.result_type.thrift_spec

 # raise application exception, if present
 for exc_spec in result_spec[1:]:
 exc = getattr(body, exc_spec[2])
 if exc is not None:
 raise exc

 # success - non-void
 if len(result_spec) >= 1 and result_spec[0] is not None:

 # value expected, but got none
 # TODO - server side should use this same logic
 if body.success is None:
 raise ValueExpectedError(
 'Expected a value to be returned for %s, '
 'but recieved None - only void procedures can'
 'return None.' % request.endpoint
)

 response.body = body.success
 raise gen.Return(response)

 # success - void
 else:
 response.body = None
 raise gen.Return(response)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/testing/vcr/config.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.testing.vcr.config

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

import contextlib2
import inspect
import wrapt
import sys

from tchannel.tornado import TChannel
from tchannel.thrift import client_for

from .cassette import Cassette
from .patch import Patcher, force_reset
from .server import VCRProxyService, VCRProxy

VCRProxyClient = client_for('vcr', VCRProxy)

class _CassetteContext(object):
 """Lets use_cassette be used as a context manager and a decorator."""

 def __init__(self, path, record_mode, inject):
 self.path = path
 self.record_mode = record_mode
 self.inject = inject

 self._exit_stack = contextlib2.ExitStack()

 def __enter__(self):
 cassette = self._exit_stack.enter_context(
 Cassette(path=self.path, record_mode=self.record_mode)
)

 server = self._exit_stack.enter_context(
 VCRProxyService(cassette=cassette, unpatch=force_reset)
)

 # TODO Maybe instead of using this instance of the TChannel client, we
 # should use the one being patched to make the requests?
 client = VCRProxyClient(
 tchannel=TChannel('proxy-client'),
 hostport=server.hostport,
)
 self._exit_stack.enter_context(Patcher(client))

 return cassette

 def __exit__(self, *args):
 self._exit_stack.__exit__(*args)

 def _handle_coroutine(self, function, args, kwargs):
 with self as cassette:
 if self.inject:
 coroutine = function(cassette, *args, **kwargs)
 else:
 coroutine = function(*args, **kwargs)

 # Spin the generator, yielding its results and sending back
 # respnoses and exceptions until it is exhausted. StopIteration
 # will be raised and caught by the caller (@gen.coroutine).
 future = next(coroutine)
 while True:
 try:
 result = yield future
 except Exception:
 future = coroutine.throw(*sys.exc_info())
 else:
 future = coroutine.send(result)

 @wrapt.decorator
 def __call__(self, function, instance, args, kwargs):
 if inspect.isgeneratorfunction(function):
 return self._handle_coroutine(function, args, kwargs)

 with self as cassette:
 if self.inject:
 return function(cassette, *args, **kwargs)
 else:
 return function(*args, **kwargs)

[docs]def use_cassette(path, record_mode=None, inject=False):
 """Use or create a cassette to record/replay TChannel requests.

 This may be used as a context manager or a decorator.

 .. code-block:: python

 from tchannel.testing import vcr

 @pytest.mark.gen_test
 @vcr.use_cassette('tests/data/foo.yaml')
 def test_foo():
 channel = TChannel('test-client')
 service_client = MyServiceClient(channel)

 yield service_client.myMethod()

 def test_bar():
 with vcr.use_cassette('tests/data/bar.yaml', record_mode='none'):
 # ...

 Note that when used as a decorator on a coroutine, the ``use_cassette``
 decorator must be applied BEFORE ``gen.coroutine`` or
 ``pytest.mark.gen_test``.

 :param path:
 Path to the cassette. If the cassette did not already exist, it will
 be created. If it existed, its contents will be replayed (depending on
 the record mode).
 :param record_mode:
 The record mode dictates whether a cassette is allowed to record or
 replay interactions. This may be a string specifying the record mode
 name or an element from the
 :py:class:`tchannel.testing.vcr.RecordMode` object. This parameter
 defaults to :py:attr:`tchannel.testing.vcr.RecordMode.ONCE`. See
 :py:class:`tchannel.testing.vcr.RecordMode` for details on supported
 record modes and how to use them.
 :param inject:
 If True, when ``use_cassette`` is used as a decorator, the cassette
 object will be injected into the function call as the first argument.
 Defaults to False.
 """
 return _CassetteContext(path=path, record_mode=record_mode, inject=inject)

 # TODO create some sort of configurable VCR object which implements
 # use_cassette. Top-level use_cassette can just use a default instance.

__all__ = ['use_cassette']

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/schemes/raw.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.schemes.raw

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from . import RAW

[docs]class RawArgScheme(object):
 """Semantic params and serialization for raw."""

 NAME = RAW

 def __init__(self, tchannel):
 self._tchannel = tchannel

 def __call__(self, service, endpoint, body=None, headers=None,
 timeout=None, retry_on=None, retry_limit=None, hostport=None):
 """Make Raw TChannel Request.

 .. code-block: python

 from tchannel import TChannel

 tchannel = TChannel('my-service')

 resp = tchannel.raw(
 service='some-other-service',
 endpoint='get-all-the-crackers',
)

 :param string service:
 Name of the service to call.
 :param string endpoint:
 Endpoint to call on service.
 :param string body:
 A raw body to provide to the endpoint.
 :param string headers:
 A raw headers block to provide to the endpoint.
 :param int timeout:
 How long to wait before raising a ``TimeoutError`` - this
 defaults to ``tchannel.glossary.DEFAULT_TIMEOUT``.
 :param string retry_on:
 What events to retry on - valid values can be found in
 ``tchannel.retry``.
 :param string retry_limit:
 How many times to retry before
 :param string hostport:
 A 'host:port' value to use when making a request directly to a
 TChannel service, bypassing Hyperbahn.
 :return Response:
 """

 return self._tchannel.call(
 scheme=self.NAME,
 service=service,
 arg1=endpoint,
 arg2=headers,
 arg3=body,
 timeout=timeout,
 retry_on=retry_on,
 retry_limit=retry_limit,
 hostport=hostport,
)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/thrift/client.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.thrift.client

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

import inspect
from collections import namedtuple

from thrift import Thrift
from tornado import gen

from tchannel.errors import OneWayNotSupportedError
from tchannel.tornado.broker import ArgSchemeBroker
from tchannel.dep.thrift_arg_scheme import DeprecatedThriftArgScheme
from .reflection import get_service_methods

Generated clients will use this base class.
_ClientBase = namedtuple(
 '_ClientBase',
 'tchannel hostport service trace protocol_headers'
)

[docs]def client_for(service, service_module, thrift_service_name=None):
 """Build a client class for the given Thrift service.

 The generated class accepts a TChannel and an optional hostport as
 initialization arguments.

 Given ``CommentService`` defined in ``comment.thrift`` and registered with
 Hyperbahn under the name "comment", here's how this may be used:

 .. code-block:: python

 from comment import CommentService

 CommentServiceClient = client_for("comment", CommentService)

 @gen.coroutine
 def post_comment(articleId, msg, hostport=None):
 client = CommentServiceClient(tchannel, hostport)
 yield client.postComment(articleId, CommentService.Comment(msg))

 :param service:
 Name of the Hyperbahn service being called. This is the name with
 which the service registered with Hyperbahn.
 :param service_module:
 The Thrift-generated module for that service. This usually has the
 same name as defined for the service in the IDL.
 :param thrift_service_name:
 If the Thrift service has a different name than its module, use this
 parameter to specify it.
 :returns:
 An object with the same interface as the service that uses the given
 TChannel to call the service.
 """
 assert service_module, 'service_module is required'
 service = service or '' # may be blank for non-hyperbahn use cases
 if not thrift_service_name:
 thrift_service_name = service_module.__name__.rsplit('.', 1)[-1]

 method_names = get_service_methods(service_module.Iface)

 def new(cls, tchannel, hostport=None, trace=False, protocol_headers=None):
 """
 :param tchannel:
 TChannel through which the requests will be sent.
 :param hostport:
 Address of the machine to which the requests will be sent, or None
 if the TChannel will do peer selection on a per-request basis.
 :param trace:
 Whether Zipkin tracing is enabled.
 :param protocol_headers:
 Protocol-level headers to send with the request.
 """
 return _ClientBase.__new__(
 cls, tchannel, hostport, service, trace, protocol_headers
)

 new.__name__ = '__new__'
 methods = {'__new__': new}

 for method_name in method_names:
 methods[method_name] = generate_method(
 service_module, thrift_service_name, method_name
)

 return type(thrift_service_name + 'Client', (_ClientBase,), methods)

[docs]def generate_method(service_module, service_name, method_name):
 """Generate a method for the given Thrift service.

 :param service_module:
 Thrift-generated service module
 :param service_name:
 Name of the Thrift service
 :param method_name:
 Method being called
 """
 assert service_module
 assert service_name
 assert method_name

 args_type = getattr(service_module, method_name + '_args')
 result_type = getattr(service_module, method_name + '_result', None)

 # oneway not currently supported
 # TODO - write test for this
 if result_type is None:
 def not_supported(self, *args, **kwags):
 raise OneWayNotSupportedError(
 'TChannel+Thrift does not currently support oneway procedues'
)
 return not_supported

 arg_scheme = DeprecatedThriftArgScheme(result_type)
 result_spec = result_type.thrift_spec
 # result_spec is a tuple of tuples in the form:
 #
 # (fieldId, fieldType, fieldName, ...)
 #
 # Where "..." is other information we don't care about right now.
 #
 # result_spec will be empty if there is no return value or exception for
 # the method.
 #
 # Its first element, with field ID 0, contains the spec for the return
 # value. It is None if the result type is void but the method may still
 # throw exceptions.
 #
 # Elements after the first one are specs for the exceptions.

 endpoint = '%s::%s' % (service_name, method_name)

 @gen.coroutine
 def send(self, *args, **kwargs):
 params = inspect.getcallargs(
 getattr(service_module.Iface, method_name), self, *args, **kwargs
)
 params.pop('self') # self is already known

 # $methodName_args is the implicit struct containing the various
 # method parameters.
 call_args = args_type()
 for name, value in params.items():
 setattr(call_args, name, value)

 response = yield ArgSchemeBroker(arg_scheme).send(
 self.tchannel.request(
 hostport=self.hostport, service=self.service
),
 endpoint,
 {},
 call_args, # body
 protocol_headers=self.protocol_headers,
 traceflag=self.trace
)

 call_result = yield response.get_body()
 if not result_spec:
 # void return type and no exceptions allowed
 raise gen.Return(None)

 for exc_spec in result_spec[1:]:
 # May have failed with an exception
 exc = getattr(call_result, exc_spec[2])
 if exc is not None:
 raise exc

 if result_spec[0]:
 # Non-void return type. Return the result.
 success = getattr(call_result, result_spec[0][2])
 if success is not None:
 raise gen.Return(success)
 else:
 # No return type specified and no exceptions raised.
 raise gen.Return(None)

 # Expected a result but nothing was present in the object. Something
 # went wrong.
 raise Thrift.TApplicationException(
 Thrift.TApplicationException.MISSING_RESULT,
 '%s failed: did not receive a result as expected' % method_name
)
 # TODO: We should probably throw a custom exception instead.

 send.__name__ = method_name
 return send

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/sync/client.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.sync.client

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

from collections import namedtuple
from concurrent.futures import TimeoutError

from threadloop import ThreadLoop
from tornado import gen

from tchannel import tornado as async
from tchannel.tornado.hyperbahn import FIRST_ADVERTISE_TIME, AdvertiseError

[docs]class TChannelSyncClient(object):
 """Make synchronous TChannel requests.

 This client does not support incoming connections or requests- this is
 a uni-directional client only.

 The client is implemented on top of the Tornado-based implementation and
 starts and stops IOLoops on-demand.

 .. code-block:: python

 client = TChannelSyncClient()
 response = client.request(
 hostport='localhost:4040',
 service='HelloService',
).send(
 'hello', None, json.dumps({"name": "World"})
)

 """

 def __init__(self, name, process_name=None, known_peers=None, trace=False):
 """Initialize a new TChannelClient.

 :param process_name:
 Name of the calling process. Used for logging purposes only.
 """
 self._async_client = async.TChannel(
 name,
 process_name=process_name,
 known_peers=known_peers,
 trace=trace
)
 self._threadloop = ThreadLoop()
 self._threadloop.start()

[docs] def request(self, *args, **kwargs):
 """Initiate a new request to a peer.

 :param hostport:
 If specified, requests will be sent to the specific host.
 Otherwise, a known peer will be picked at random.
 :param service:
 Name of the service being called. Defaults to an empty string.
 :param service_threshold:
 If ``hostport`` was not specified, this specifies the score
 threshold at or below which peers will be ignored.
 :returns SyncClientOperation:
 An object with a ``send(arg1, arg2, arg3)`` operation.
 """
 operation = self._async_client.request(*args, **kwargs)
 operation = SyncClientOperation(operation, self._threadloop)

 return operation

[docs] def advertise(self, routers, name=None, timeout=None):
 """Advertise with Hyperbahn.

 :param routers: list of hyperbahn addresses to advertise to.
 :param name: service name to advertise with.
 :param timeout: backoff period for failed requests.
 :returns: first advertise result.
 :raises AdvertiseError: when unable to begin advertising.
 """

 @gen.coroutine
 def make_request():

 response = yield self._async_client.advertise(
 routers=routers,
 name=name,
 timeout=timeout,
)

 header = yield response.get_header()
 body = yield response.get_body()

 result = Response(header, body)

 raise gen.Return(result)

 future = self._threadloop.submit(make_request)

 # we're going to wait 1s longer than advertises
 # timeout mechanism, so it has a chance to timeout
 wait_until = timeout or FIRST_ADVERTISE_TIME
 wait_until += 1

 # block for advertise's first response,
 # using wait_until as a fallback timeout mechanism
 try:
 result = future.result(wait_until)
 except TimeoutError:
 raise AdvertiseError(
 "Failed to register with Hyperbahn."
)

 return result

[docs]class SyncClientOperation(object):
 """Allows making client operation requests synchronously.

 This object acts like tchannel.TChannelClientOperation, but instead
 uses a threadloop to make the request synchronously.
 """

 def __init__(self, operation, threadloop):
 assert operation, "operation is required"
 assert threadloop, "threadloop.ThreadLoop is required"
 self.operation = operation
 self._threadloop = threadloop

[docs] def send(self, arg1, arg2, arg3):
 """Send the given triple over the wire.

 :param arg1:
 String containing the contents of arg1. If None, an empty string
 is used.
 :param arg2:
 String containing the contents of arg2. If None, an empty string
 is used.
 :param arg3:
 String containing the contents of arg3. If None, an empty string
 is used.
 :return concurrent.futures.Future:
 Future response from the peer.
 """
 arg1 = arg1 or ''
 arg2 = arg2 or ''
 arg3 = arg3 or ''

 @gen.coroutine
 def make_request():

 response = yield self.operation.send(arg1, arg2, arg3)

 header = yield response.get_header()
 body = yield response.get_body()

 result = Response(header, body)

 raise gen.Return(result)

 future = self._threadloop.submit(make_request)
 return future

Response = namedtuple('Response', 'header, body')

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 All modules for which code is available

		tchannel.errors

		tchannel.schemes.json

		tchannel.schemes.raw

		tchannel.schemes.thrift

		tchannel.sync.client

		tchannel.sync.thrift

		tchannel.tchannel

		tchannel.testing.vcr.config

		tchannel.testing.vcr.record_modes

		tchannel.thrift.client

		tchannel.tornado.dispatch

		tchannel.tornado.request

		tchannel.tornado.response

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/tchannel.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.tchannel

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import (
 absolute_import, division, print_function, unicode_literals
)

from tornado import gen

from . import schemes, transport, retry
from .glossary import DEFAULT_TIMEOUT
from .response import Response, ResponseTransportHeaders
from .tornado import TChannel as DeprecatedTChannel

__all__ = ['TChannel']

[docs]class TChannel(object):
 """Make requests to TChannel services."""

 def __init__(self, name, hostport=None, process_name=None,
 known_peers=None, trace=False):

 # until we move everything here,
 # lets compose the old tchannel
 self._dep_tchannel = DeprecatedTChannel(
 name=name,
 hostport=hostport,
 process_name=process_name,
 known_peers=known_peers,
 trace=trace
)

 self.name = name

 # set arg schemes
 self.raw = schemes.RawArgScheme(self)
 self.json = schemes.JsonArgScheme(self)
 self.thrift = schemes.ThriftArgScheme(self)

 @gen.coroutine
[docs] def call(self, scheme, service, arg1, arg2=None, arg3=None,
 timeout=None, retry_on=None, retry_limit=None, hostport=None):
 """Make low-level requests to TChannel services.

 This method uses TChannel's protocol terminology for param naming.

 For high level requests with automatic serialization and semantic
 param names, use ``raw``, ``json``, and ``thrift`` methods instead.

 :param string scheme:
 Name of the Arg Scheme to be sent as the Transport Header ``as``;
 eg. 'raw', 'json', 'thrift' are all valid values.
 :param string service:
 Name of the service that is being called. This is used
 internally to route requests through Hyperbahn, and for grouping
 of connection, and labelling stats. Note that when hostport is
 provided, requests are not routed through Hyperbahn.
 :param string arg1:
 Value for ``arg1`` as specified by the TChannel protocol - this
 varies by Arg Scheme, but is typically used for endpoint name.
 :param string arg2:
 Value for ``arg2`` as specified by the TChannel protocol - this
 varies by Arg Scheme, but is typically used for app-level headers.
 :param string arg3:
 Value for ``arg3`` as specified by the TChannel protocol - this
 varies by Arg Scheme, but is typically used for the request body.
 :param int timeout:
 How long to wait before raising a ``TimeoutError`` - this
 defaults to ``tchannel.glossary.DEFAULT_TIMEOUT``.
 :param string retry_on:
 What events to retry on - valid values can be found in
 ``tchannel.retry``.
 :param string retry_limit:
 How many times to retry before
 :param string hostport:
 A 'host:port' value to use when making a request directly to a
 TChannel service, bypassing Hyperbahn.
 """

 # TODO - dont use asserts for public API
 assert format, "format is required"
 assert service, "service is required"
 assert arg1, "arg1 is required"

 # default args
 if arg2 is None:
 arg2 = ""
 if arg3 is None:
 arg3 = ""
 if timeout is None:
 timeout = DEFAULT_TIMEOUT
 if retry_on is None:
 retry_on = retry.DEFAULT
 if retry_limit is None:
 retry_limit = retry.DEFAULT_RETRY_LIMIT

 # TODO - allow filters/steps for serialization, tracing, etc...

 # calls tchannel.tornado.peer.PeerClientOperation.__init__
 operation = self._dep_tchannel.request(
 service=service,
 hostport=hostport,
 arg_scheme=scheme,
 retry=retry_on,
)

 # fire operation
 transport_headers = {
 transport.SCHEME: scheme,
 transport.CALLER_NAME: self.name,
 }
 response = yield operation.send(
 arg1=arg1,
 arg2=arg2,
 arg3=arg3,
 headers=transport_headers,
 attempt_times=retry_limit,
 ttl=timeout,
)

 # unwrap response
 header = yield response.get_header()
 body = yield response.get_body()
 t = transport.to_kwargs(response.headers)
 t = ResponseTransportHeaders(**t)

 result = Response(header, body, t)

 raise gen.Return(result)

 def listen(self, port=None):
 return self._dep_tchannel.listen(port)

 @property
 def hostport(self):
 return self._dep_tchannel.hostport

 def register(self, endpoint, scheme=None, handler=None, **kwargs):
 return self._dep_tchannel.register(
 endpoint=endpoint,
 scheme=scheme,
 handler=handler,
 **kwargs
)

 def advertise(self, routers, name=None, timeout=None):
 return self._dep_tchannel.advertise(
 routers=routers,
 name=name,
 timeout=timeout
)

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/errors.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.errors

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

[docs]class TChannelError(Exception):
 """Represent a TChannel-generated exception."""
 pass

[docs]class ProtocolError(TChannelError):
 """Represent a protocol-level exception"""
 __slots__ = (
 'code',
 'description',
 'id',
 'tracing',
)

 def __init__(
 self,
 code,
 description,
 id=None,
 tracing=None,
):
 super(TChannelError, self).__init__(description)
 self.code = code
 self.tracing = tracing
 self.id = id
 self.description = description

[docs]class InvalidMessageError(TChannelError):
 """Represent an invalid message."""
 pass

[docs]class InvalidEndpointError(TChannelError):
 """Represent an message containing invalid endpoint."""
 pass

class TimeoutError(TChannelError):
 # TODO fix circular dependence
 code = 0x01

class ConnectionClosedError(TChannelError):
 pass

[docs]class ReadError(TChannelError):
 """Raised when there is an error while reading input."""
 pass

[docs]class InvalidChecksumError(TChannelError):
 """Represent invalid checksum type in the message"""
 pass

[docs]class StreamingError(TChannelError):
 """Represent Streaming Message Exception"""
 pass

[docs]class NoAvailablePeerError(TChannelError):
 """Represents a failure to find any peers for a request."""
 pass

[docs]class InvalidErrorCodeError(TChannelError):
 """Represent Invalid Error Code exception"""
 def __init__(self, code):
 super(InvalidErrorCodeError, self).__init__(
 'Invalid Error Code (%s)' % (code))
 self.code = code

[docs]class AdvertiseError(TChannelError):
 """Represent advertise failure exception"""
 pass

[docs]class AlreadyListeningError(TChannelError):
 """Represents exception from attempting to listen multiple times."""
 pass

[docs]class TChannelApplicationError(TChannelError):
 """The remote application returned an exception.

 This is not a protocol error. This means a response was received with the
 ``code`` flag set to fail.
 """
 def __init__(self, code, args):
 super(TChannelError, self).__init__(
 'TChannel application error (%s)' % (args)
)

 self.code = code
 self.args = args

[docs]class OneWayNotSupportedError(TChannelError):
 """Raised when oneway Thrift procedure is called."""
 pass

[docs]class ValueExpectedError(TChannelError):
 """Raised when a non-void Thrift response contains no value."""
 pass

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_modules/tchannel/sync/thrift.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 		Module code »

 Source code for tchannel.sync.thrift

Copyright (c) 2015 Uber Technologies, Inc.
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from __future__ import absolute_import

from tchannel.thrift.reflection import get_service_methods
from tchannel.thrift.client import client_for as async_client_for

[docs]def client_for(service, service_module, thrift_service_name=None):
 """Build a synchronous client class for the given Thrift service.

 The generated class accepts a TChannelSyncClient and an optional
 hostport as initialization arguments.

 Given ``CommentService`` defined in ``comment.thrift`` and registered
 with Hyperbahn under the name "comment", here's how this might be used:

 .. code-block:: python

 from tchannel.sync import TChannelSyncClient
 from tchannel.sync.thrift import client_for

 from comment import CommentService

 CommentServiceClient = client_for('comment', CommentService)

 tchannel_sync = TChannelSyncClient('my-service')
 comment_client = CommentServiceClient(tchannel_sync)

 future = comment_client.postComment(
 articleId,
 CommentService.Comment("hi")
)
 result = future.result()

 :param service:
 Name of the Hyperbahn service being called.
 :param service_module:
 The Thrift-generated module for that service. This usually has
 the same name as definied for the service in the IDL.
 :param thrift_service_name:
 If the Thrift service has a different name than its module, use
 this parameter to specify it.
 :returns:
 An Thrift-like class, ready to be instantiated and used
 with TChannelSyncClient.
 """
 assert service_module, 'service_module is required'
 service = service or '' # may be blank for non-hyperbahn use cases
 if not thrift_service_name:
 thrift_service_name = service_module.__name__.rsplit('.', 1)[-1]

 method_names = get_service_methods(service_module.Iface)

 def init(self, tchannel_sync,
 hostport=None,
 trace=False,
 protocol_headers=None):
 self.async_thrift = self.__async_client_class__(
 tchannel=tchannel_sync._async_client,
 hostport=hostport,
 trace=trace,
 protocol_headers=protocol_headers,
)
 self.threadloop = tchannel_sync._threadloop

 init.__name__ = '__init__'
 methods = {
 '__init__': init,
 '__async_client_class__': async_client_for(
 service,
 service_module,
 thrift_service_name,
)
 }

 methods.update({
 method_name: generate_method(method_name)
 for method_name in method_names
 })

 return type(thrift_service_name + 'Client', (object,), methods)

[docs]def generate_method(method_name):
 """Generate a method for a given Thrift service.

 Uses the provided TChannelSyncClient's threadloop in order
 to convert RPC calls to concurrent.futures

 :param method_name: Method being called.
 :return: A method that invokes the RPC using TChannelSyncClient
 """

 def send(self, *args, **kwargs):
 """Forward RPC call to TChannelSyncClient

 :return concurrent.futures.Future:
 """
 return self.threadloop.submit(
 getattr(self.async_thrift, method_name), *args, **kwargs
)

 return send

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		TChannel for Python 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Uber Technologies, Inc..
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/up.png

_static/file.png

_static/comment-bright.png

_static/plus.png

