TChannel Documentation
Release 0.1.0

Uber Technologies, Inc.

September 22, 2015

Contents

1 Getting Started 3
1.1 Initial Setup o o e e e e e e e e e e e e e e e e e e 3
1.2 Thrift Interface Definition e e e e 3
1.3 Python Server e e e e e e e 4
1.4 Handlers e e e e e e e e e e e e 5
1.5 Hyperbahn e e 6
1.6 Debugging e e e e e 6
1.7 Python Client 0 o e e e e e e e e e e e e e 7
2 API Documentation 9
2.1 TChannel L e e e 9
2.2 EXCEPHONS .« . v v o e 13
23 Thrift . . . e 13
24 Synchronous Client L e 14
3 Changelog 17
3.1 0.12.0(2015-07-20) . . . oo e e e e e e e e e 17
32 0.11.2(2015-07-20) e e 17
33 0.11.1 (2015-07-17) .« o o o e e e 17
34 0.11.0 (2015-07-17) . . o o o i o e e e 17
3.5 0103 (2015-07-13) . o o o o e 17
3.6 0.10.2(2015-07-13) . . o o ot e e e e 18
3.7 0.10.1 (2015-07-10) o o e e 18
3.8 0.10.0 (2015-07-10) o o o e e e 18
3.9 0.9.1(2015-07-09) e e e 18
3.10 0.9.0 (2015-07-07) . . o o o i e e e e 18
301 0.8.5(2015-06-30) . . o o o o e e 18
312 0.8.4(2015-06-17) . . o o oo o e e 18
3.13 0.8.3(2015-06-15) . . . o o o e e e 18
3,14 0.8.2 (2015-06-11) . . . o o o e e e 19
3,15 0.8.1(2015-06-10) . . . o oo o e e e 19
Python Module Index 21

TChannel Documentation, Release 0.1.0

A Python implementation of TChannel.

Contents 1

http://tchannel.readthedocs.org/

TChannel Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Getting Started

The code matching this guide is here.

1.1 Initial Setup

Create a directory called keyvalue to work inside of:

S mkdir ~/keyvalue

&

S cd ~/keyvalue

Inside of this directory we’re also going to create a keyvalue module, which requires an __init__ .py and a
setup.py at the root:

S mkdir keyvalue
S touch keyvalue/__init__.py

Setup a virtual environment for your service and install the tornado and tchannel:

S virtualenv env
S source env/bin/activate
S pip install tchannel

1.2 Thrift Interface Definition

Create a Thrift file under thrift/service.thrift that defines an interface for your service:

‘3 cat thrift/service.thrift

exception NotFoundError {
1: string key,

service KeyValue {
string getValue (
1: string key,
) throws (
1: NotFoundError notFound,

void setValue (

https://github.com/uber/tchannel-python/tree/master/examples/keyvalue
https://virtualenv.pypa.io/en/latest/
https://thrift.apache.org/

TChannel Documentation, Release 0.1.0

1: string key,
2: string value,

}

This defines a service named KeyValue with two functions:
getValue a function which takes one string parameter, and returns a string.
setValue a void function that takes in two parameters.

Once you have defined your service, generate corresponding Thrift types by running the following:

S thrift —--gen py:new_style,dynamic, slots,utf8strings \
—out keyvalue thrift/service.thrift

This generates client- and server-side code to interact with your service.

You may want to verify that your thrift code was generated successfully:

> python —-m keyvalue.service.KeyValue

1.3 Python Server

To serve an application we need to instantiate a TChannel instance, which we will register handlers against. Open up
keyvalue/server.py and write something like this:

from _ future import absolute_import
from tornado import ioloop

from service import KeyValue
from tchannel.tornado import TChannel

app = TChannel ('keyvalue-server')

@Qapp.register (KeyValue)
def getValue (request, response, tchannel):
pass

Qapp.register (KeyValue)
def setValue (request, response, tchannel):
pass

def run():
app.listen{()
ioloop.IOLoop.current () .start ()

if name == main_
run ()

Here we have created a TChannel instance and registered two no-op handlers with it. The name of these handlers map
directly to the Thrift service we defined earlier.

4 Chapter 1. Getting Started

TChannel Documentation, Release 0.1.0

NOTE: Method handlers do not need to be declared at import-time, since this can become unwieldy in complex
applications. We could also define them like so:

def run():
app = TChannel ('keyvalue-server'")
app.register (KeyValue, handler=Get)
app.register (KeyValue, handler=Set)
app.listen()
ioloop.IOLoop.current () .start ()

A TChannel server only has one requirement: a name for itself. By default an ephemeral port will be chosen to listen
on (although an explicit port can be provided).

(As your application becomes more complex, you won’t want to put everything in a single file like this. Good code
structure is beyond the scope of this guide.)

Let’s make sure this server is in a working state:

python keyvalue/server.py
~C

The process should hang until you kill it, since it’s listening for requests to handle. You shouldn’t get any exceptions.

1.4 Handlers

To implement our service’s endpoints let’s create an in-memory dictionary that our endpoints will manipulate:

values = {}

@Qapp.register (KeyValue)

def getValue (request, response, tchannel):
key = request.args.key
value = values.get (key)

if value is None:
raise KeyValue.NotFoundError (key)

return value

@app.register (KeyValue)

def setValue (request, response, tchannel):
key = request.args.key
value = request.args.value
values[key] = value

You can see that the return value of Get will be coerced into the expected Thrift shape. If we needed to return an
additional field, we could accomplish this by returning a dictionary.

This example service doesn’t do any network IO work. If we wanted to take advantage of Tornado’s asynchronous
capabilities, we could define our handlers as coroutines and yield to IO operations:

Qapp.register (KeyValue)
@tornado.gen.coroutine
def setValue (request, response, tchannel):
key = request.args.key
value = request.args.value

1.4. Handlers 5

http://tornado.readthedocs.org/en/latest/gen.html

TChannel Documentation, Release 0.1.0

Simulate some non-blocking IO work.
yield tornado.gen.sleep(1.0)

values[key] = value

You have probably noticed that all of these handlers are passed response and tchannel objects, in addition to a
request. The response object is available for advanced use cases where it doesn’t make sense to return one
object as a response body — for example, long-lived connections that gradually stream the response back to the caller.

The fchannel object contains context about the current request (such as Zipkin tracing information) and should be used
to make requests to other TChannel services. (Note that this API may change in the future.)

1.4.1 Transport Headers

In addition to the call arguments and headers, the request object also provides some additional information about
the current request under the request . transport object:

transport.flags Request flags used by the protocol for fragmentation and streaming.

transport.ttl The time (in milliseconds) within which the caller expects a response.

transport .headers Protocol level headers for the request. For more information on transport headers check the
Transport Headers section of the protocol document.

1.5 Hyperbahn

As mentioned earlier, our service is listening on an ephemeral port, so we are going to register it with the Hyperbahn
routing mesh. Clients will use this Hyperbahn mesh to determine how to communicate with your service.

Let’s change our run method to advertise our service with a local Hyperbahn instance:

def run{():
app.listen()
app.advertise(['localhost:23000"'], 'keyvalue-server')
ioloop.IOLoop.current () .start ()

The advertise method takes a seed list of Hyperbahn routers and the name of the service that clients will call into. After
advertising, the Hyperbahn will connect to your process and establish peers for service-to-service communication.

Consult the Hyperbahn documentation for instructions on how to start a process locally.

1.6 Debugging

Let’s spin up the service and make a request to it through Hyperbahn. Python provides tcurl . py script, but we need
to use the Node version for now since it has Thrift support.

S python keyvalue/server.py &

S node tcurl -p localhost:23000 -t ~/keyvalue/thrift service KeyValue::Set -3 '{"key":
S node tcurl -p localhost:23000 -t ~/keyvalue/thrift service KeyValue::Get -3 '{"key":
$ node tcurl -p localhost:23000 -t ~/keyvalue/thrift service KeyValue::Get -3 '{"key":

Your service can now be accessed from any language over Hyperbahn + TChannel!

6 Chapter 1. Getting Started

hello",
hello"}'
hi"}l

"vall

https://github.com/uber/tchannel/blob/master/docs/protocol.md#transport-headers
https://github.com/uber/tcurl

TChannel Documentation, Release 0.1.0

1.7 Python Client

Let’s make a client call from Python in keyvalue/client.py:

from tornado import gen

from tornado import ioloop

from tchannel.thrift import client_for

from service import KeyValue

KeyValueClient = client_for ('keyvalue-server', KeyValue)
@gen.coroutine

def run{():

app_name = 'keyvalue-client'

app = TChannel (app_name)
app.advertise(['localhost:23000"], app_name)

client = KeyValueClient (app)
yield client.Set ("foo", "bar")
response = yield client.Get ("foo")

print response

if _ name_ == '_ _main__
ioloop.IOLoop.current () .run_sync (run)

Similar to the server case, we initialize a TChannel instance and advertise ourselves on Hyperbahn (to establish how
to communicate with keyval-server). After this we create a client class to add TChannel functionality to our generated
Thrift code. We then set and retrieve a value from our server.

1.7. Python Client 7

TChannel Documentation, Release 0.1.0

8 Chapter 1. Getting Started

CHAPTER 2

API Documentation

2.1 TChannel

class tchannel.tornado.TChannel (name, hostport=None, process_name=None, known_peers=None,

) trace=False)
Manages inbound and outbound connections to various hosts.

advertise (routers, name=None, timeout=None)
Make a service available on the Hyperbahn routing mesh.

This will make contact with a Hyperbahn host from a list of known Hyperbahn routers. Additional Hyper-
bahn connections will be established once contact has been made with the network.

Parameters

e router - A seed list of addresses of Hyperbahn routers, e.g.,
["127.0.0.1:23000"].

* name — The identity of this service on the Hyperbahn.

This is usually unnecessary, as it defaults to the name given when initializing the
TChannel (which is used as your identity as a caller).

Returns
A future that resolves to the remote server’s response after the first advertise finishes.
Adpvertisement will continue to happen periodically.

listen (port=None)
Start listening for incoming connections.

A request handler must have already been specified with TChannel.host.

Parameters port — An explicit port to listen on. This is unnecessary when advertising on
Hyperbahn.

Returns Returns immediately.
Raises AlreadyListeningError If listen was already called.

register (endpoint, scheme=None, handler=None, **kwargs)
Register a handler with this TChannel.

This may be used as a decorator:

TChannel Documentation, Release 0.1.0

app = TChannel (name='foo')

@app.register ("hello", "Jjson")
def hello_handler (request, response, tchannel):
params = yield request.get_body ()

Or as a function:

Here we have a Thrift handler for ‘Foo::hello’
app.register (Foo, "hello", hello_thrift_handler)

Parameters

* endpoint — Name of the endpoint being registered for raw and JSON arg schemes.
Reference to the Thrift-generated module for the Thrift arg scheme.

* scheme — Name of the scheme under which the endpoint is being registered. One of
“raw”, “json”, and “thrift”. Defaults to “raw”, except if “endpoint” was a module, in
which case this defaults to “thrift”.

* handler - If specified, this is the handler function. If ignored, this function returns a
decorator that can be used to register the handler function.

Returns If handler was specified, this returns handler. Otherwise, it returns a decorator
that can be applied to a function to register it as the handler.
request (hostport=None, service=None, arg_scheme=None, retry=None, **kwargs)
Initiate a new request through this TChannel.

Parameters

* hostport — Host to which the request will be made. If unspecified, a random known
peer will be picked. This is not necessary if using Hyperbahn.

* service — The name of a service available on Hyperbahn. Defaults to an empty string.

* arg_scheme — Determines the serialization scheme for the request. One of ‘raw’, ‘json’,
or ‘thrift’. Defaults to ‘raw’.

* rety — One of ‘n’ (never retry), ‘c’ (retry on connection errors), ‘t’ (retry on timeout),
‘ct’ (retry on connection errors and timeouts).

Defaults to ‘c’.

class tchannel.tornado.RequestDispatcher
A synchronous RequestHandler that dispatches calls to different endpoints based on argl.

Endpoints are registered using register or the route decorator.

handler = #

@handler.route ('my_method')
def my_method(request, response, proxy):
response.write('hello world")

static not_ found (request, response, proxy)
Default behavior for requests to unrecognized endpoints.

register (rule, handler, broker=None)
Register a new endpoint with the given name.

10 Chapter 2. API Documentation

TChannel Documentation, Release 0.1.0

@dispatcher.register('is_healthy')
def check_health(request, response, proxy):
#

Parameters

* rule —Name of the endpoint. Incoming Call Requests must have this as arg1l to dispatch
to this handler.

If RequestHandler.FALLBACK is specified as a rule, the given handler will be used
as the ‘fallback’ handler when requests don’t match any registered rules.

* handler - A function that gets called with Request, Response, and the proxy.

* broker — Broker injects customized serializer and deserializer into request/response ob-
ject.

broker==None means it registers as raw handle. It deals with raw buffer in the re-
quest/response.
route (rule, helper=None)
See register for documentation.

class tchannel.tornado.Request (id=None, flags=0, ttl=1000, tracing=None, service=None, head-
ers=None, checksum=None, argstreams=None, scheme=None, end-

point=None)
Represents an incoming request to an endpoint.

Request class is used to represent the CallRequestMessage at User’s level. This is going to hide the protocol
level message information.

get_body (*args, **kwargs)
Get the body value from the resquest.

Returns a future contains the deserialized value of body

get_body_ s ()
Get the raw stream of body.

Returns the argstream of body

get_header (*args, **kwargs)
Get the header value from the request.

Returns a future contains the deserialized value of header

get_header_s ()
Get the raw stream of header.

Returns the argstream of header

should_retry on_error (error)
rules for retry

Parameters error — ProtocolException that returns from Server

class tchannel.tornado.Response (connection=None, id=None, flags=None, code=None, trac-
ing=None, headers=None, checksum=None, argstreams=None,

) scheme=None)
An outgoing response.

Response class is used to represent the CallResponseMessage at User’s level. This is going to hide the protocol
level message information.

2.1. TChannel 11

TChannel Documentation, Release 0.1.0

flush ()
Flush the response buffer.

No more write or set operations is allowed after flush call.

get_body (*args, **kwargs)
Get the body value from the response.

Returns a future contains the deserialized value of body

get_body_s ()
Get the raw stream of body.

Returns the argstream of body

get_header (*args, **kwargs)
Get the header value from the response.

Returns a future contains the deserialized value of header

get_header_s ()
Get the raw stream of header.

Returns the argstream of header

set_body_ s (stream)
Set customized body stream.

Note: the body stream can only be changed before the stream is consumed.
Parameters stream — InMemStream/PipeStream for body

Raises TChannelError Raise TChannelError if the stream is being sent when you try to change
the stream.

set_header_s (stream)
Set customized header stream.

Note: the header stream can only be changed before the stream is consumed.
Parameters stream - InMemStream/PipeStream for header

Raises TChannelError Raise TChannelError if the stream is being sent when you try to change
the stream.

write_body (chunk)
Werite to header.

Note: whenever write_body is called, the header stream will be closed. write_header method is unavail-
able.

Parameters chunk — content to write to body
Raises TChannelError Raise TChannelError if the response’s flush() has been called

write_ header (chunk)
Write to header.

Note: the header stream is only available to write before write body.
Parameters chunk — content to write to header

Raises TChannelError Raise TChannelError if the response’s flush() has been called

12 Chapter 2. API Documentation

TChannel Documentation, Release 0.1.0

2.2 Exceptions

exception tchannel.errors.AdvertiseError
Represent advertise failure exception

exception tchannel.errors.AlreadylListeningError
Represents exception from attempting to listen multiple times.

exception tchannel.errors.InvalidChecksumError
Represent invalid checksum type in the message

exception tchannel.errors.InvalidEndpointError
Represent an message containing invalid endpoint.

exception tchannel.errors.InvalidErrorCodeError (code)
Represent Invalid Error Code exception

exception tchannel.errors.InvalidMessageError
Represent an invalid message.

exception tchannel.errors.NoAvailablePeerError
Represents a failure to find any peers for a request.

exception tchannel.errors.ProtocolError (code, description, id=None, tracing=None)
Represent a protocol-level exception

exception tchannel.errors.ReadError
Raised when there is an error while reading input.

exception tchannel.errors.StreamingError
Represent Streaming Message Exception

exception tchannel.errors.TChannelApplicationError (code, args)
The remote application returned an exception.

This is not a protocol error. This means a response was received with the code flag set to fail.

exception tchannel.errors.TChannelError
Represent a TChannel-generated exception.

2.3 Thrift

tchannel.thrift.client.client_for (service, service_module, thrift_service_name=None)

Build a client class for the given Thrift service.

The generated class accepts a TChannel and an optional hostport as initialization arguments.

Given Comment Service defined in comment .thrift and registered with Hyperbahn under the name

“comment”, here’s how this may be used:

from comment import CommentService
CommentServiceClient = client_for ("comment", CommentService)

@gen.coroutine
def post_comment (articleId, msg, hostport=None) :
client = CommentServiceClient (tchannel, hostport)
yield client.postComment (articlelId, CommentService.Comment (msg))

2.2. Exceptions

13

TChannel Documentation, Release 0.1.0

Parameters

* service — Name of the Hyperbahn service being called. This is the name with which the
service registered with Hyperbahn.

* service_module - The Thrift-generated module for that service. This usually has the
same name as defined for the service in the IDL.

e thrift_service_ name - If the Thrift service has a different name than its module, use
this parameter to specify it.

Returns An object with the same interface as the service that uses the given TChannel to call the
service.
tchannel.thrift.client.generate_method (service_module, service_name, method_name)
Generate a method for the given Thrift service.
Parameters
* service_module - Thrift-generated service module
e service_name — Name of the Thrift service

* method name — Method being called

2.4 Synchronous Client

class tchannel.sync.client .Response (header, body)

body
Alias for field number 1

header
Alias for field number 0

class tchannel.sync.client.SyncClientOperation (operation, threadloop)
Allows making client operation requests synchronously.

This object acts like tchannel. TChannelClientOperation, but instead uses a threadloop to make the request syn-
chronously.

send (argl, arg2, arg3)
Send the given triple over the wire.

Parameters
* argl — String containing the contents of argl. If None, an empty string is used.
* arg2 - String containing the contents of arg2. If None, an empty string is used.
* arg3 - String containing the contents of arg3. If None, an empty string is used.
Return concurrent.futures.Future Future response from the peer.

class tchannel.sync.client.TChannelSyncClient (name, process_name=None,

known_peers=None, trace=False)
Make synchronous TChannel requests.

This client does not support incoming connections or requests- this is a uni-directional client only.

The client is implemented on top of the Tornado-based implementation and starts and stops IOLoops on-demand.

14 Chapter 2. API Documentation

TChannel Documentation, Release 0.1.0

client = TChannelSyncClient ()

response = client.request (
hostport="'localhost:4040",
service='HelloService',

) .send (
'hello', None, Jjson.dumps({"name": "World"})

advertise (routers, name=None, timeout=None)
Adpvertise with Hyperbahn.

Parameters
e routers - list of hyperbahn addresses to advertise to.
* name — service name to advertise with.
* timeout — backoff period for failed requests.
Returns first advertise result.
Raises AdvertiseError when unable to begin advertising.

request (*args, **kwargs)
Initiate a new request to a peer.

Parameters

* hostport - If specified, requests will be sent to the specific host. Otherwise, a known
peer will be picked at random.

* service — Name of the service being called. Defaults to an empty string.

* service_threshold - If hostport was not specified, this specifies the score
threshold at or below which peers will be ignored.

Returns SyncClientOperation An object with a send (argl, arg2, arg3) operation.

tchannel.sync.thrift.client_for (service, service_module, thrift_service_name=None)

Build a synchronous client class for the given Thrift service.
The generated class accepts a TChannelSyncClient and an optional hostport as initialization arguments.

Given Comment Service defined in comment .thrift and registered with Hyperbahn under the name
“comment”, here’s how this might be used:

from tchannel.sync import TChannelSyncClient
from tchannel.sync.thrift import client_for

from comment import CommentService
CommentServiceClient = client_for ('comment', CommentService)

tchannel_sync = TChannelSyncClient ('my-service')

comment_client = CommentServiceClient (tchannel_sync)
future = comment_client.postComment (
articleId,

CommentService.Comment ("hi")
)

result = future.result ()

Parameters

2.4. Synchronous Client 15

TChannel Documentation, Release 0.1.0

* service — Name of the Hyperbahn service being called.

* service_module — The Thrift-generated module for that service. This usually has the
same name as definied for the service in the IDL.

* thrift service_ name — If the Thrift service has a different name than its module, use
this parameter to specify it.

Returns An Thrift-like class, ready to be instantiated and used with TChannelSyncClient.
tchannel.sync.thrift.generate_method (method_name)
Generate a method for a given Thrift service.
Uses the provided TChannelSyncClient’s threadloop in order to convert RPC calls to concurrent.futures
Parameters method_name — Method being called.

Returns A method that invokes the RPC using TChannelSyncClient

16 Chapter 2. API Documentation

CHAPTER 3

Changelog

3.1 0.12.0 (2015-07-20)

¢ Add TChannel.is_listening () to determine if 11isten has been called.
e Calling TChannel.listen () more than onceraisesatchannel.errors.AlreadyListeningError.

e TChannel.advertise () will now automatically start listening for connections if 1isten () has not al-
ready been called.

e Use threadloop==0.4.

* Removed print_arg.

3.2 0.11.2 (2015-07-20)

* Fix sync client’s advertise - needed to call listen in thread.

3.3 0.11.1 (2015-07-17)

* Fix sync client using 0. 0. 0. 0 host which gets rejected by Hyperbahn during advertise.

3.4 0.11.0 (2015-07-17)

¢ Added advertise support to sync client in tchannel.sync.TChannelSyncClient.advertise.

* BREAKING - renamed router argument to routers intchannel.tornado.TChannel.advertise.

3.5 0.10.3 (2015-07-13)

* Support PyPy 2.

* Fix bugs in TChannel.advertise.

17

TChannel Documentation, Release 0.1.0

3.6 0.10.2 (2015-07-13)

* Made TChannel.advertise retry on all exceptions.

3.7 0.10.1 (2015-07-10)

* Previous release was broken with older versions of pip.

3.8 0.10.0 (2015-07-10)

* Add exponential backoff to TChannel .advertise.

* Make transport metadata available under request . transport on the server-side.

3.9 0.9.1 (2015-07-09)

e Use threadloop 0.3.* to fix main thread not exiting when tchannel.sync.TChannelSyncClient is
used.

3.10 0.9.0 (2015-07-07)

* Allow custom handlers for unrecognized endpoints.

e Released tchannel.sync.TChannelSyncClient and tchannel.sync.thrift.client_for.

3.11 0.8.5 (2015-06-30)

¢ Add port parameter for TChannel.listen.

3.12 0.8.4 (2015-06-17)

* Fix bug where False and False-like values were being treated as None in Thrift servers.

3.13 0.8.3 (2015-06-15)

* Add as attribute to the response header.

18 Chapter 3. Changelog

TChannel Documentation, Release 0.1.0

3.14 0.8.2 (2015-06-11)

* Fix callable t raceflag being propagated to the serializer.
* Fix circular imports.

e Fix TimeoutError retry logic.

3.15 0.8.1 (2015-06-10)

¢ Initial release.

3.14. 0.8.2 (2015-06-11) 19

TChannel Documentation, Release 0.1.0

20 Chapter 3. Changelog

Python Module Index

t

tchannel.
tchannel.
tchannel.
tchannel.

errors, 13
sync.client, 14
sync.thrift, I5
thrift.client, 13

21

TChannel Documentation, Release 0.1.0

22 Python Module Index

Index

A

advertise() (tchannel.sync.client. TChannelSyncClient
method), 15

advertise() (tchannel.tornado.TChannel method), 9

AdvertiseError, 13

AlreadyListeningError, 13

B

body (tchannel.sync.client.Response attribute), 14

C

client_for() (in module tchannel.sync.thrift), 15
client_for() (in module tchannel.thrift.client), 13

F

flush() (tchannel.tornado.Response method), 11

G

generate_method() (in module tchannel.sync.thrift), 16
generate_method() (in module tchannel.thrift.client), 14
get_body() (tchannel.tornado.Request method), 11
get_body() (tchannel.tornado.Response method), 12
get_body_s() (tchannel.tornado.Request method), 11
get_body_s() (tchannel.tornado.Response method), 12
get_header() (tchannel.tornado.Request method), 11
get_header() (tchannel.tornado.Response method), 12
get_header_s() (tchannel.tornado.Request method), 11
get_header_s() (tchannel.tornado.Response method), 12

H

header (tchannel.sync.client.Response attribute), 14

InvalidChecksumError, 13
InvalidEndpointError, 13
InvalidErrorCodeError, 13
InvalidMessageError, 13

L

listen() (tchannel.tornado. TChannel method), 9

N

NoAvailablePeerError, 13
not_found() (tchannel.tornado.RequestDispatcher static
method), 10

P

ProtocolError, 13

R

ReadError, 13

register() (tchannel.tornado.RequestDispatcher method),
10

register() (tchannel.tornado.TChannel method), 9

Request (class in tchannel.tornado), 11

request() (tchannel.sync.client. TChannelSyncClient
method), 15

request() (tchannel.tornado.TChannel method), 10

RequestDispatcher (class in tchannel.tornado), 10

Response (class in tchannel.sync.client), 14

Response (class in tchannel.tornado), 11

route() (tchannel.tornado.RequestDispatcher method), 11

S

send() (tchannel.sync.client.SyncClientOperation

method), 14

set_body_s() (tchannel.tornado.Response method), 12

set_header_s() (tchannel.tornado.Response method), 12

should_retry_on_error() (tchannel.tornado.Request
method), 11

StreamingError, 13

SyncClientOperation (class in tchannel.sync.client), 14

T

TChannel (class in tchannel.tornado), 9
tchannel.errors (module), 13
tchannel.sync.client (module), 14
tchannel.sync.thrift (module), 15
tchannel.thrift.client (module), 13
TChannelApplicationError, 13
TChannelError, 13

23

TChannel Documentation, Release 0.1.0

TChannelSyncClient (class in tchannel.sync.client), 14

W

write_body() (tchannel.tornado.Response method), 12
write_header() (tchannel.tornado.Response method), 12

24 Index

	Getting Started
	Initial Setup
	Thrift Interface Definition
	Python Server
	Handlers
	Hyperbahn
	Debugging
	Python Client

	API Documentation
	TChannel
	Exceptions
	Thrift
	Synchronous Client

	Changelog
	0.12.0 (2015-07-20)
	0.11.2 (2015-07-20)
	0.11.1 (2015-07-17)
	0.11.0 (2015-07-17)
	0.10.3 (2015-07-13)
	0.10.2 (2015-07-13)
	0.10.1 (2015-07-10)
	0.10.0 (2015-07-10)
	0.9.1 (2015-07-09)
	0.9.0 (2015-07-07)
	0.8.5 (2015-06-30)
	0.8.4 (2015-06-17)
	0.8.3 (2015-06-15)
	0.8.2 (2015-06-11)
	0.8.1 (2015-06-10)

	Python Module Index

